73 research outputs found

    Prospective cohort study of procalcitonin levels in children with cancer presenting with febrile neutropenia

    Get PDF
    BACKGROUND: Febrile neutropenia (FNP) causes significant morbidity and mortality in children undergoing treatment for cancer. The development of clinical decision rules to help stratify risks in paediatric FNP patients and the use of inflammatory biomarkers to identify high risk patients is an area of recent research. This study aimed to assess if procalcitonin (PCT) levels could be used to help diagnose or exclude severe infection in children with cancer who present with febrile neutropenia, both as a single measurement and in addition to previously developed clinical decision rules. METHODS: This prospective cohort study of a diagnostic test included patients between birth and 18 years old admitted with febrile neutropenia to the Paediatric Oncology and Haematology Ward in Leeds between 1(st) October 2012 and 30(th) September 2013. Each admission with FNP was treated as a separate episode. Blood was taken for a procalcitonin level at admission with routine investigations. 'R' was used for statistical analysis. Likelihood ratios were calculated and multivariable logistic regression. RESULTS: Forty-eight episodes from 27 patients were included. PCT >2 ng/dL was strongly associated with increased risk of severe infection (likelihood ratio of 26 [95% CI 3.5, 190]). The data suggests that the clinical decision rules are largely ineffective at risk stratification, frequently over-stating the risk of individual episodes. High procalcitonin levels on admission are correlated with a greatly increased risk of severe infection. CONCLUSIONS: This study does not show a definitive benefit in using PCT in FNP though it supports further research on its use. The benefit of novel biomarkers has not been proven and before introducing new tests for patients it is important their benefit above existing features is proven, particularly due to the increasing importance of health economics

    PreImplantation Trial of Histopathology In renal Allografts (PITHIA): a stepped-wedge cluster randomised controlled trial protocol.

    Get PDF
    INTRODUCTION: Most potential kidney transplant donors in the UK are aged over 60 years, yet increasing donor age is associated with poorer graft survival and function. Urgent preimplantation kidney biopsy can identify chronic injury, and may aid selection of better 'quality' kidneys from this group. However, the impact of biopsy on transplant numbers remains unproven. The PreImplantation Trial of Histopathology In renal Allografts (PITHIA) study will assess whether the introduction of a national, 24 hours, digital histopathology service increases the number, and improves outcomes, of kidneys transplanted in the UK from older deceased donors. METHODS AND ANALYSIS: PITHIA is an open, multicentre, stepped-wedge cluster randomised study, involving all UK adult kidney transplant centres. At 4-monthly intervals, a group of 4-5 randomly selected clusters (transplant centres) will be given access to remote, urgent, digital histopathology (total intervention period, 24 months). The trial has two primary end points: it is powered for an 11% increase in the proportion of primary kidney offers from deceased donors aged over 60 years that are transplanted, and a 6 mL/min increase in the estimated glomerular filtration rate of recipients at 12 months post-transplant. This would equate to an additional 120 kidney transplants performed in the UK annually. Trial outcome data will be collected centrally via the UK Transplant Registry held by NHS Blood and Transplant (NHSBT) and will be analysed using mixed effects models allowing for clustering within centres and adjusting for secular trends. An accompanying economic evaluation will estimate the cost-effectiveness of the service to the National Health Service. ETHICS AND DISSEMINATION: The study has been given favourable ethical opinion by the Cambridge South Research Ethics Committee and is approved by the Health Research Authority. We will present our findings at key transplant meetings, publish results within 4 years of the trial commencing and support volunteers at renal patient groups to disseminate the trial outcome. TRIAL REGISTRATION NUMBER: ISRCTN11708741; Pre-results.nih

    Predicting reliability through structured expert elicitation with the repliCATS (Collaborative Assessments for Trustworthy Science) process

    Get PDF
    As replications of individual studies are resource intensive, techniques for predicting the replicability are required. We introduce the repliCATS (Collaborative Assessments for Trustworthy Science) process, a new method for eliciting expert predictions about the replicability of research. This process is a structured expert elicitation approach based on a modified Delphi technique applied to the evaluation of research claims in social and behavioural sciences. The utility of processes to predict replicability is their capacity to test scientific claims without the costs of full replication. Experimental data supports the validity of this process, with a validation study producing a classification accuracy of 84% and an Area Under the Curve of 0.94, meeting or exceeding the accuracy of other techniques used to predict replicability. The repliCATS process provides other benefits. It is highly scalable, able to be deployed for both rapid assessment of small numbers of claims, and assessment of high volumes of claims over an extended period through an online elicitation platform, having been used to assess 3000 research claims over an 18 month period. It is available to be implemented in a range of ways and we describe one such implementation. An important advantage of the repliCATS process is that it collects qualitative data that has the potential to provide insight in understanding the limits of generalizability of scientific claims. The primary limitation of the repliCATS process is its reliance on human-derived predictions with consequent costs in terms of participant fatigue although careful design can minimise these costs. The repliCATS process has potential applications in alternative peer review and in the allocation of effort for replication studies

    Miocene to present oceanographic variability in the Scotia Sea and Antarctic Ice Sheet dynamics: Insight from revised seismic-stratigraphy following IODP Expedition 382

    Get PDF
    Scotia Sea and the Drake Passage is key towards understanding the development of modern oceanic circulation patterns and their implications for ice sheet growth and decay. The sedimentary record of the southern Scotia Sea basins documents the regional tectonic, oceanographic and climatic evolution since the Eocene. However, a lack of accurate age estimations has prevented the calibration of the reconstructed history. The upper sedimentary record of the Scotia Sea was scientifically drilled for the first time in 2019 during International Ocean Discovery Program (IODP) Expedition 382, recovering sediments down to ∼643 and 676 m below sea floor in the Dove and Pirie basins respectively. Here, we report newly acquired high resolution physical properties data and the first accurate age constraints for the seismic sequences of the upper sedimentary record of the Scotia Sea to the late Miocene. The drilled record contains four basin-wide reflectors – Reflector-c, -b, -a and -a' previously estimated to be ∼12.6 Ma, ∼6.4 Ma, ∼3.8 Ma and ∼2.6 Ma, respectively. By extrapolating our new Scotia Sea age model to previous morpho-structural and seismic-stratigraphic analyses of the wider region we found, however, that the four discontinuities drilled are much younger than previously thought. Reflector-c actually formed before 8.4 Ma, Reflector-b at ∼4.5/3.7 Ma, Reflector-a at ∼1.7 Ma, and Reflector-a' at ∼0.4 Ma. Our updated age model of these discontinuities has major implications for their correlation with regional tectonic, oceanographic and cryospheric events. According to our results, the outflow of Antarctic Bottom Water to northern latitudes controlled the Antarctic Circumpolar Current flow from late Miocene. Subsequent variability of the Antarctic ice sheets has influenced the oceanic circulation pattern linked to major global climatic changes during early Pliocene, Mid-Pleistocene and the Marine Isotope Stage 11

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Get PDF
    Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles

    Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years

    Get PDF
    The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels

    पर्यावरण रक्षणासाठी

    No full text
    corecore