69 research outputs found

    Temporomandibular joint and Giant Panda's (Ailuropoda melanoleuca) adaptation to bamboo diet

    Get PDF
    Here, we present new evidence that evolutionary adaptation of the Ailuripodinae lineage to bamboo diet has taken place by morphological adaptations in the masticatory system. The giant panda in the wild and in captivity removes without an exception the outer skin of all bamboo shoots, rich in abrasive and toxic compounds, by the highly adapted premolars P3 and P4. The temporomandibular joint (TMJ) allows sidewise movement of the jaw and the premolars can, in a cusp-to-cusp position, remove the poorly digestible outer skin of the bamboo before crushing the bamboo with molars. Based on the evidence presented here, we suggest that adaptation of TMJ to lateral movement for enabling cusp-to-cusp contact of premolars is the crucial evolutionary factor as which we consider the key to understand the Ailuropodinae lineage adaptive pathway to utilize the bamboo resource

    Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas

    Get PDF
    To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and helminths, in giant pandas (GPs), we created a comprehensive microbial genome database and used metagenomic sequences to align against the database. We delineated a detailed and different gut microbiota structures of GPs. A total of 680 species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found. Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota, Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae, and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to previously described parasites, another 44 species of helminths were found in GPs. Also, differences in abundance of microbiota were found between the captive, semiwild, and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707 putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the results indicated not only bacteria but also fungi, bacteriophages, and helminths were diverse in gut of giant pandas, which provided basis for the further identification of role of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs harbor the ability of cellulose and hemicellulose degradation

    Application of starch degrading bacteria from tobacco leaves in improving the flavor of flue-cured tobacco

    Get PDF
    Starch is an essential factor affecting the quality of flue-cured tobacco, and high starch content can affect the sensory quality and safety. Recently, the degradation of macromolecules in tobacco raw materials by using additional microorganisms to improve their intrinsic quality and safety has become a new research hotspot in the tobacco industry. However, the technical maturity and application scale are limited. Our study analyzed the correlation between microbial community composition and volatile components on the surface of tobacco leaves from 14 different grades in Fujian tobacco-producing areas. The PICRUSt software was utilized to predict the function of the microbial community present in tobacco leaves. Furthermore, dominant strains that produced amylase were screened out, and an enzyme solution was prepared to enhance the flue-cured tobacco flavor. Changes in the content of macromolecules and volatile components were determined, and sensory evaluations were conducted to assess the overall quality of the tobacco leaves. The results showed that the dominant bacterial genera on the surface of Fujian tobacco leaves were Variovorax, Sphingomonas, Bacillus, etc. Bacillus was positively correlated with various volatile components, which contributed to the sweet and aromatic flavors of Fujian flue-cured tobacco. The main genetic functions of Fujian flue-cured tobacco surface bacteria were carbohydrate metabolism and amino acid metabolism. After treating flue-cured tobacco with an enzyme preparation prepared by the fermentation of Paenibacillus amylolyticus A17 #, the content of starch, pectin, and cellulose in flue-cured tobacco decreased significantly compared with the control group. Meanwhile, the content of total soluble sugar and reducing sugar was significantly increased, and the volatile aroma components, such as 3-hydroxy--damascone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-Pyran-4-one, ethyl palmitate, ethyl linolenic acid, etc., were significantly increased. The aroma quality and quantity of flue-cured tobacco were enhanced, while impurities were reduced. The smoke characteristics were improved, with increased fineness, concentration, and moderate strength. The taste characteristics were also improved, with reduced irritation and a better aftertaste. In conclusion, Bacillus, as the dominant genus in the abundance of bacterial communities on tobacco surfaces in Fujian, had an essential impact on the flavor of tobacco leaves by participating in carbohydrate metabolism and finally forming the unique flavor style of flue-cured tobacco in Fujian tobacco-producing areas. Paenibacillus amylolyticus A17 #, a target strain with amylase-producing ability, was screened from the surface of Fujian flue-cured tobacco. The enzyme preparation, produced by the fermentation of Paenibacillus amylolyticus A17 #, was utilized to reduce the content of macromolecules, increase the content of water-soluble total sugar and reducing sugar, and produce a variety of crucial volatile aroma components, which had a significant improvement on the quality of tobacco leaves

    Data from: Population genetics reveals high connectivity of giant panda populations across human disturbance features in key nature reserve

    No full text
    The giant panda is an example of a species that has faced extensive historical habitat fragmentation and anthropogenic disturbance, and is assumed to be isolated in numerous subpopulations with limited gene flow between them. To investigate the population size, health and connectivity of pandas in a key habitat area, we noninvasively collected a total of 539 fresh wild giant panda fecal samples for DNA extraction within Wolong Nature Reserve, Sichuan, China. Seven validated tetra-microsatellite markers were used to analyze each sample, and a total of 142 unique genotypes were identified. Non-spatial and spatial capture-recapture models estimated the population size of the reserve at 164 and 137 individuals (95% confidence intervals 153-175 and 115-163), respectively. Relatively high levels of genetic variation and low levels of inbreeding were estimated, indicating adequate genetic diversity. Surprisingly, no significant genetic boundaries were found within the population despite the national road G350 that bisects the reserve, which is also bordered with patches of development and agricultural land. We attribute this to high rates of migration, with 4 giant panda road-crossing events confirmed within a year based on repeated captures of individuals. This likely means that giant panda populations within mountain ranges are better connected than previously thought. Increased development and tourism traffic in the area and throughout the current panda distribution poses a threat of increasing population isolation, however. Maintaining and restoring adequate habitat corridors for dispersal is thus a vital step for preserving the levels of gene flow seen in our analysis and the continued conservation of the giant panda meta-population in both Wolong and throughout their current range

    Wolong_Arlequin

    No full text
    The microsatellite data of 142 giant pandas from the Wolong National Nature Reserve, in Arlequin forma

    Electric field-induced deterioration of cement mortars owing to calcium leaching

    No full text
    This paper investigated the calcium leaching from plain and fly ash/limestone blended cement mortars under an electric field. The Ca2+ leaching degree and reduced CaO content were measured to assess the extent of calcium leaching, and the compressive strength loss was used as an indicator to evaluate the degradation of the mortars due to leaching. Additionally, the changes in mineralogical composition, micrograph, Ca/Si ratio of C–S–H gel, and pore structure of leached samples were analyzed through X-ray diffraction (XRD), scanning electron microscopy (SEM/EDS), and mercury intrusion porosimetry (MIP). The findings indicated a notable acceleration in the leaching of Ca2+ due to the application of an electric field. Consequently, the calcium leaching degree of mortars continuously increased with time. The accelerated calcium leaching resulted in the loose microstructure and increased porosity mainly for the cathode part as well as the reduction in compressive strength of mortars. The addition of fly ash was beneficial in reducing the calcium leaching and strength loss of mortars after 90 days of exposure to the electric field, contrary to the effects observed with the incorporation of limestone powders. Attention should be paid to the durability issues of cement-based materials induced by the electric field
    • …
    corecore