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To obtain full details of gut microbiota, including bacteria, fungi, bacteriophages, and
helminths, in giant pandas (GPs), we created a comprehensive microbial genome
database and used metagenomic sequences to align against the database. We
delineated a detailed and different gut microbiota structures of GPs. A total of 680
species of bacteria, 198 fungi, 185 bacteriophages, and 45 helminths were found.
Compared with 16S rRNA sequencing, the dominant bacterium phyla not only included
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria but also Cyanobacteria
and other eight phyla. Aside from Ascomycota, Basidiomycota, and Glomeromycota,
Mucoromycota, and Microsporidia were the dominant fungi phyla. The bacteriophages
were predominantly dsDNA Myoviridae, Siphoviridae, Podoviridae, ssDNA Inoviridae,
and Microviridae. For helminths, phylum Nematoda was the dominant. In addition to
previously described parasites, another 44 species of helminths were found in GPs.
Also, differences in abundance of microbiota were found between the captive, semiwild,
and wild GPs. A total of 1,739 genes encoding cellulase, β-glucosidase, and cellulose
β-1,4-cellobiosidase were responsible for the metabolism of cellulose, and 128,707
putative glycoside hydrolase genes were found in bacteria/fungi. Taken together, the
results indicated not only bacteria but also fungi, bacteriophages, and helminths were
diverse in gut of giant pandas, which provided basis for the further identification of role
of gut microbiota. Besides, metagenomics revealed that the bacteria/fungi in gut of GPs
harbor the ability of cellulose and hemicellulose degradation.

Keywords: bacteria, fungi, bacteriophages, helminths, giant pandas, metagenomic sequencing

INTRODUCTION

Mammals are metagenomic because they consist of their own gene complements and a large
number of microorganisms residing within them (Ley et al., 2008). These microorganisms include
bacteria, fungi, protozoa, and viruses and are collectively referred to as microbiota (Kamada et al.,
2013). The gut microbiota is an extra organ that regulates the immune system and influences the
physiology, health, and nutrition of its host (Maurice et al., 2013; Qin et al., 2014; Zhernakova
et al., 2016). It not only makes an essential contribution to physiology and metabolism of host
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(Bäckhed et al., 2004; Hooper and Macpherson, 2010; Tremaroli
and Backhed, 2012) but also serves as an environmental factor
that contributes to obesity and its comorbidities (Tremaroli
and Backhed, 2012) and protects the gut against invasion of
exogenous pathogens (Kamada et al., 2013).

Compared with other members of microbiota, bacteria are
abundant and therefore more influential on the gut of mammals
(Human Microbiome, and Project, 2012), particularly related to
health and disease of host (Kelly et al., 2005). Fungi also play an
important role in disease of host (Huffnagle and Noverr, 2013;
Sokol et al., 2017) and may be responsible for fiber degradation
and fermentative digestion in herbivores (Li and Heath, 1993;
Liggenstoffer et al., 2010). Bacteriophages are the most abundant
biological group on earth and genetically even more diverse
than their bacterial prey/hosts (Reyes et al., 2013). They are
the most abundant members of the gut virobiota (Łusiak-
Szelachowska et al., 2017) contributing to gut inflammation and
bacterial dysbiosis (Norman et al., 2015). Parasitic helminths
(PHs) residing in the gut have profound potentials to threaten
the stability and persistence of hosts, impair host fitness, and even
lead to mortality of hosts. The interactions between gut PHs and
commensal bacteria are likely to play a pivotal role in regulating
the development of the gut immune system (Cantacessi et al.,
2014; Lee et al., 2014).

The giant panda (GP, Ailuropoda melanoleuca) is a rare
endemic wild animal found in China and a flagship species for
wildlife conservation. GP belongs to the order Carnivora with a
typical carnivorous digestive system (Fang et al., 2012; Xue et al.,
2015), but almost entirely lives on a bamboo-dominated diet.
Its genome encodes all the enzymes necessary for a carnivorous
digestive system but lacks those for digesting cellulose and
hemicellulose (Fang et al., 2012). However, low digestibility of
cellulose and hemicellulose for the GP’s unique bamboo diet may
be assisted by microbiota (Zhu et al., 2011; Xue et al., 2015).
Necessary enzymes for digestion of cellulose include cellulase
(EC 3.2.1.4), cellulose 1,4-β-cellobiosidase (EC 3.2.1.91), and
β-glucosidases (EC 3.2.1.21) (Kubicek et al., 2009; Zhu et al.,
2011).

To date, most studies have been focusing on diversity
of gut bacteria of GPs, and thus little is known about the
characteristics of the fungi, bacteriophages, and helminths. The
present study was to provide full details of gut microbiota of
the GPs, including bacteria, fungi, bacteriophages and helminths,
established by metagenomic sequencing. We also provided a
detailed characterization of the bacteria and fungi possessing
the genes associated with cellulose degradation and glycoside
hydrolase (GH) to evaluate the ability of cellulose, hemicellulose
and starch hydrolysis of microbiota.

MATERIALS AND METHODS

Sample Collection
Fecal samples from the captive, semiwild, and wild GPs were
collected immediately after defecation, snap frozen, and shipped
to the laboratory on dry ice. Four samples from the captive GPs
collected from the China Conservation and Research Center for

the Giant Panda, six samples of semiwild GPs from Hetaoping
Base and Liziping Nature Reserve and three samples from the
wild GPs from Wolong Nature Reserve were included. Captive,
semiwild, and wild GPs live in different environments. Captive
GPs lived in man-made limited space for attracting tourists
during visits, whereas semiwild GPs lived in a large area and
natural habitat or reintroduced into primeval forest without any
disturbance by humans. Wild GPs were born and lived in the
wild.

Extraction of DNA and Sequencing
DNA was extracted from fecal samples by using the PowerFecal R©

DNA Isolation Kit (MO BIO Laboratories, Inc.) following the
manufacturer’s instructions. The metagenomic sequencing was
performed on an Illumina NextSeq 500 platform in a 2 × 150
paired-end mode.

Annotation of Microbial Genome
An in-house comprehensive microbial genome database
(CMDB) was created using scaffold-level or chromosome-
level genomic data from National Center for Biotechnology
Information (NCBI) GenBank/Refseq, which spans 16,574
species including 6,761 bacteria, 1,641 fungi, 456 protozoa,
7,149 viruses, and 567 archaea. The high-quality short reads
were aligned against the CMDB. Genomes of PH, including 94
from parasitic nematodes and 29 from parasitic trematodes,
were downloaded from wormbase parasite ftp site1 (Howe et al.,
2016) (WBPS8). The WBPS8 also includes eight free-living
Caenorhabditis worms. Additional genomes, including genomes
of human, GP, bamboo, and flies, were included in the analysis
for contamination screening and comparison.

Whole metagenome shotgun sequencing reads from GP fecal
samples were first subject to quality processing by using the in-
house scripts to trim the adaptors, low quality, and duplication
reads. Reads with low complexity or length < 90 bp were then
removed. In silico decontamination was performed by mapping
those processed reads to the potential contamination genomes.
The final remaining cleaned reads were used for microbial
profiling. If the bacteria, bacteriophages, fungi, and PH genome
were uniquely mapped by the >50, 50, 300, and 1800 cleaned
reads from a sample, the corresponding bacteria, bacteriophages,
fungi, and PH species were considered to be present in this
sample. The different cutoffs were selected for fungi and PH
because their genomes are generally larger compared with the
bacterium/bacteriophage. Abundance of a given genome within
a sample was obtained by adding all the mapped reads specific to
this genome from the corresponding sample.

Prediction of Functional Genes
These non-redundant reads were performed de novo assembly
by using Soapdenovo 2 (Luo et al., 2012) to obtain long contigs
and scaffolds. The predicted open reading frames were annotated
and compared with BLASTP databases by using MetaGeneMark
(Zhu et al., 2010) from the long contigs with a length more
than 300 bp. These non-redundant protein sequences were

1http://parasite.wormbase.org/ftp.html
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compared in NCBI-NR database with 90% similarity using CD-
HIT software (Li and Godzik, 2006). The genes were functionally
annotated using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa et al., 2017) and Carbohydrate-
Active Enzymes (CAZy) database (Cantarel et al., 2009).

Analysis of Data
The cladogram with circular representations of taxonomic and
phylogenetic trees was produced using GraPhlAn (Asnicar
et al., 2015). The network displayed correlations between
different species by using Cytoscape (Shannon et al., 2003).
KEGG metabolic pathways were generated to obtain the most
comprehensive image using ipath 2.0 (Yamada et al., 2011).

RESULTS

Metagenomic Sequencing of DNA
The 124.6 gigabases (Gbs) of high-quality reads was obtained
from all samples, with an average of 9.6 Gbs of each sample
(Supplementary Table S1). An average of 10.3 Gbs came from
the captive GPs, 7.7 Gbs from semiwild GPs, and 12.5 Gbs
from wild GPs. The short reads for each individual sample
were performed de novo assembly into long contigs for further
analysis and annotation. Totally, 2.3 million contigs and a total
sequence length of 1,199 million bps were obtained eventually
with an average of 602 contig N50, 7.0% of which (159.1 thousand
sequences) were more than 1,000 bp (Supplementary Table S2).

We performed alignment of all high-quantity reads against
CMDB and WBPS8 to profile diversity of microbiota in the gut
of GPs. After exclusion of the irrelevant reads with bacteria,
fungi, bacteriophages, and helminths, 316.2 million reads were
obtained. Among them, 231.7 million reads (73.28%) belonged to
bacterial genomes, 5.6 million reads (1.77%) to fungal genomes,
3.7 million reads (1.17%) to bacteriophage genomes, and 75.2
million reads (23.78%) to helminthous genomes.

Diversity of Bacteria
Totally, 680 species of bacteria affiliated with 13 classified phyla,
23 classified classes, 47 classified orders, 88 classified families,
228 classified genera, 1 unclassified phylum, 4 unclassified
classes, 5 unclassified orders, 9 unclassified families, and
10 unclassified genera that could not be classified to the
corresponding taxonomic level were found (Figure 1A).
The two most abundant phyla were Proteobacteria (75.41%)
and Firmicutes (23.94%), followed by Bacteroidetes (0.52%),
Actinobacteria (0.09%), and Cyanobacteria (0.02%), and others
(0.02%) (Supplementary Table S3 and Figure 2A). Within the
Proteobacteria, three top abundant classes were the members
of Gammaproteobacteria with an average abundance of 72.9%,
Betaproteobacteria with 1.7%, and Alphaproteobacteria with
0.8%. Within the Firmicutes, the most abundant class was Bacilli
with an average of 23.3%, followed by Clostridia (0.5%) and
Erysipelotrichia (0.1%). The phylum Bacteroidetes primarily
consisted of Sphingobacteriia (0.27%) and Flavobacteriia
(0.25%). Actinobacteria (0.1%) was the only class in the
phylum Actinobacteria. Two classes, namely, Gloeobacteria

(0.0029%) and Hormogoneae (0.00009%), mainly constituted
the phylum Cyanobacteria. At the genus level, 50 most abundant
genera are shown in Supplementary Figure S1. The top 10
prevalent genera were Escherichia (41.1%), Streptococcus (15.6%),
Pseudomonas (10.7%), Yersinia (8.9%), Lactococcus (4.8%),
Acinetobacter (3.5%), Leuconostoc (2.1%), Stenotrophomonas
(2.0%), Hafnia (1.7%), and Shigella (1.6%) (Supplementary Table
S4). The 50 most abundant species are shown in Figure 3A.
The top 10 abundant species were Escherichia coli (40.8%),
Yersinia enterocolitica (8.3%), Pseudomonas fluorescens (4.9%),
Lactococcus lactis (4.2%), Streptococcus thermophilus (3.5%),
Streptococcus infantarius (2.9%), Streptococcus gallolyticus
(2.8%), Streptococcus lutetiensis (1.8%), Stenotrophomonas
maltophilia (1.7%), and Hafnia alvei (1.7%) (Supplementary
Table S5).

We also analyzed the correlation of 58 genera with an
average abundance of ≥0.01% based on Pearson coefficient
of correlation (Supplementary Figure S2). Obviously, these
genera were affiliated with the phyla Proteobacteria, Firmicutes,
Bacteroidetes, Actinobacteria, and Cyanobacteria. Positive
correlations were observed between the majority of genera. The
genus Ralstonia showed negative correlations with Escherichia,
Shigella, Salmonella, Klebsiella, and an unclassified genus of
Enterobacteriaceae. The genus Bacillus had a negative correlation
with Serratia and Carnobacterium.

To evaluate the bacterial diversity in the gut of GPs from
different environments, we analyzed the average abundance
of bacteria at the phylum level (Supplementary Figure
S3). The results showed no significant differences in the
abundance of Proteobacteria and Firmicutes between GPs
from different environments. However, the abundance of
both Bacteroidetes and Actinobacteria in the gut of wild GPs
were significantly higher than that in the gut of the captive
and semiwild GPs (p < 0.05). The phylum Cyanobacteria
was only detected in semiwild. Besides, we evaluated the
difference at genus level with more than 0.01% among the
captive, semiwild, and wild GPs (Supplementary Figure S4).
Thirty genera showed high abundance in the wild GPs, and
Pseudomonas, Janthinobacterium, and Sphingobacterium were
found significantly high (p < 0.05). The abundances of 15 genera
were high in the captive GPs, and Raoultella was significantly
high (p < 0.05). However, other genera showed high abundance
in the semiwild GPs.

Diversity of Fungi
In total, 198 species of fungi from 7 classified phyla, 17
classified classes, 44 classified orders, 87 classified families,
130 classified genera, 3 unclassified classes, 3 unclassified
orders, and 4 unclassified families were detected (Figure 1B).
The most abundant phylum was Ascomycota (75.5%),
followed by Basidiomycota (14.7%), Glomeromycota (5.4%),
Mucoromycota (2.3%), Microsporidia (2.0%), and others
(0.1%) (Figure 2B). Within Ascomycota, five most abundant
classes, namely, Sordariomycetes (40.0%), Saccharomycetes
(16.7%), Leotiomycetes (10.7%), Eurotiomycetes (5.2%), and
Dothideomycetes (2.3%), of more than 1% were observed. Three
classes, namely, Agaricomycetes (8.1%), Microbotryomycetes
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FIGURE 1 | Taxonomic tree of bacteria, fungi, bacteriophages, and helminths in the gut of GPs. (A) Bacteria; (B) fungi; (C) bacteriophages; and (D) helminths. From
the inner to outer circles, the taxonomic levels range from kingdom to species. The diameter of nodes indicates the abundance at different taxonomic levels, and
different colors denote different taxonomic clades.

(2.8%), and Tremellomycetes (2.0%), belonged to the phylum
Basidiomycota. The Glomeromycetes (5.4%) dominated in
Glomeromycota. An unclassified class (2.3%) belonged to
Mucoromycota, and an unclassified class (2.0%) belonging to
Microsporidia were also found.

At the genus level, 50 most abundant genera are shown in
Supplementary Figure S5. The Fusarium (22.6%), Brettanomyces
(9.6%), Oidiodendron (9.1%), Tolypocladium (5.5%), Rhizophagus
(5.4%), Saccharomyces (4.6%), Piloderma (3.4%), Colletotrichum
(3.2%), Hydnomerulius (3.0%), and Rhodotorula (2.5%) were the
top 10 genera (Supplementary Table S4). In addition, 50 most
abundant species are shown in Figure 3B. The top 10 species were

Fusarium oxysporum (17.5%), Fusarium proliferatum (11.2%),
Brettanomyces custersianus (11.0%), Oidiodendron maius (9.3%),
Rhizophagus irregularis (6.6%), Tolypocladium ophioglossoides
(6.0%), Piloderma croceum (3.5%), Hydnomerulius pinastri
(3.4%), Rhodotorula toruloides (3.3%), and Saccharomyces
pastorianus (3.2%) (Supplementary Table S5).

We also analyzed the correlation of 110 genera with an average
abundance ≥0.01% based on Pearson coefficient of correlation
(Supplementary Figure S6). Obviously, positive correlations were
observed between the majorities of genera. However, negative
correlations between several special genera were also found. The
Hydnomerulius showed negative correlations with 12 genera. The
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FIGURE 2 | Relative abundance of bacteria, fungi, bacteriophages, and helminths at phyla level. (A) Bacteria; others included Bacteroidetes, Actinobacteria,
Cyanobacteria, Tenericutes, Candidatus Saccharibacteria, Acidobacteria, Spirochaetes, Deinococcus Thermus, Verrucomicrobia, Fusobacteria,
Gemmatimonadetes, and one unclassified phylum. (B) Fungi; others included Mucoromycota, Microsporidia, Chytridiomycota, and Zoopagomycota. (C)
Bacteriophages; Others included Microviridae, Inoviridae, and 2 unclassified phyla. (D) helminths.

Rhodotorula showed negative correlations with Hydnomerulius,
Oidiodendron, Piloderma, and Tolypocladium.

We also analyzed the correlation of 58 bacteria genera
with an average abundance of ≥0.01% and 110 fungi
genera with an average abundance ≥0.01% based on
Pearson coefficient of correlation (Supplementary Figure
S7). Obviously, positive correlations were observed between
the majorities of genera. However, several fungi genera,
including Brettanomyces, Cladonia, Fusarium, Hydnomerulius,
Rhodotorula, Tolypocladium, and Verticillium, had negative
correlation with many bacteria. Several bacteria genera,
including Streptococcus, Pectobacterium, Lactobacillus, Klebsiella,
Eubacterium, Escherichia, Carnobacterium and Anaerostipes, had
negative correlation with many fungi.

We found no significant differences between the three groups
from different environments at the phylum level (p > 0.05)
(Supplementary Figure S8). Subsequently, we analyzed the
57 fungus genera with an average abundance of more than
0.01% among captive, semiwild, and wild GPs (Supplementary

Figure S9). The abundance of 18 genera were high in the captive
GPs. Eighteen genera were high in the wild GPs, and Gongronella
and Ophiocordyceps were significantly high (p < 0.05). Other
genera were high in the semiwild GPs, and Rhodotorula was also
significantly high (p < 0.05).

Diversity of Bacteriophages
A total of 185 bacteriophages from 1 classified and 1
unclassified orders, 5 classified and 2 unclassified families,
and 23 classified and 6 unclassified genera were obtained
(Figure 1C). Most of bacteriophages (97.9%) came from the
order Caudovirales, whereas others came from unclassified
order (2.1%). Aside from an unclassified families accounting
for 2.1%, the five classified families were Myoviridae (58.9%),
Siphoviridae (28.8%), Podoviridae (10.0%), Inoviridae (0.1%),
and Microviridae (0.07%) (Figure 2C).

The relative abundance of all 29 genera is shown in
Supplementary Figure S10. The top 10 abundant genera were
Lambdavirus (22.7%), P2 virus (21.9%), P1 virus (13.8%),
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FIGURE 3 | Abundance of the 50 most abundant bacterial, fungal, and bacteriophagic species and all helminthous species. (A) Bacteria; (B) fungi;
(C) bacteriophages; and (D) helminths.
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Epsilon15 virus (3.3%), P22 virus (1.9%), Nona33 virus (0.7%),
Rtp virus (0.6%), G7c virus (0.3%), Tl2011 virus (0.3%), and T4
virus (0.2%), (Supplementary Table S4). Twenty-two species of
bacteriophages showed more than 1% abundance (Figure 3C),
and 10 most abundant species were Escherichia phage pro147
(10.1%), Shigella phage SfIV (9.9%), Enterobacteria phage P1
(8.9%), Enterobacteria phage mEp460 (6.2%), Enterobacteria
phage cdtI (5.8%), Salmonella phage SJ46 (5.0%), Enterobacteria
phage SfV (3.9%), Shigella phage SfII (3.8%), Enterobacteria
phage HK629 (3.5%), and Enterobacteria phage SfI (3.2%)
(Supplementary Table S5). Analyzing the host of bacteriophage
showed that most of bacteriophages were from Escherichia
(35.7%), followed by Enterobacteria (20.5%), Salmonella (17.8%),
Shigella (7.0%), and Lactococcus (4.3%). Two prophages, namely,
Lactococcus prophage bIL286 and Lactococcus prophage bIL309,
were also found.

We analyzed the correlations of 26 genera based on Pearson
coefficient of correlation (Supplementary Figure S11). Positive
correlations were observed among all genera. Meanwhile,
the family Microviridae was only detected in semiwild
GPs, and no significant difference in the abundance of
Myoviridae, Siphoviridae, Podoviridae, and Inoviridae among
the captive, semiwild, and wild GPs was observed (p > 0.05)
(Supplementary Figure S12). Interestingly, the analysis phage
genera showed a difference among captive, semiwild, and wild
GPs (Supplementary Figure S13). Most genera were more
abundant in the gut of captive GP than in semiwild and wild GPs.

Diversity of Helminths
A total of 45 helminths were identified from 2 classified phyla,
4 classified classes, 1 unclassified class, 12 classified orders, 23
classified families, and 32 classified genera (Figure 1D). The
phylum Nematoda was dominant (94.8%), and Platyhelminthes
only accounted for 5.2% (Figure 2D and Supplementary Table
S3). The phylum Nematoda contained the class Chromadorea
with abundance of 70.6% and Enoplea with 24.2%. The phylum
Platyhelminthes had three classes, namely, Trematoda (4.8%),
Cestoda (0.3%), and 1 unclassified class (0.01%). At the genus
level, all 32 abundant genera are shown in Supplementary
Figure S14. The 10 most abundant genera were Caenorhabditis
(35.2%), Trichuris (23.7%), Pristionchus (7.5%), Anisakis (5.9%),
Steinernema (4.8%), Clonorchis (4.3%), Toxocara (3.0%), Ascaris
(2.8%), Globodera (2.3%), and Brugia (1.6%) (Supplementary
Table S4).

At the species level, the most dominant helminth was
Caenorhabditis angaria (34.0%), followed by Trichuris trichiura
(23.7%), Pristionchus pacificus (7.5%), Anisakis simplex (5.9%),
Clonorchis sinensis (4.3%), Steinernema feltiae (3.4%), Toxocara
canis (3.0%), Ascaris suum (2.8%), Globodera pallida (2.3%), and
Brugia timori (1.6%) (Figure 3D). In all 45 helminths, 30 PH were
found in mammals or humans (Figure 4 and Table 1).

No significant differences were observed among the captive,
semiwild, and wild GPs at the phylum level (p > 0.05)
(Supplementary Figure S15). As shown in Figure 4, 14 species
including C. angaria and P. pacificus were found high in captive
GPs. Twenty-two species were found high in semiwild GPs. In
addition, nine species were found high in wild GPs. Among

which, Parastrongyloides trichosuri, Steinernema glaseri, and
Romanomermis culicivorax were significantly high (p < 0.05).

Cellulose Degradation-Related Microbes
and Metabolic Pathways
We compared the genes present in bacterial and fungal
metagenome based on KEGG database and CAZy database to
assess the ability of hydrolyzing cellulose and encoding the
CAZy. By analyzing 1,446,631 genes from 13,075 KO based on
KEGG database, we found 1739 genes possessing homologous
sequences to the genes encoding cellulase (EC 3.2.1.4) (n = 364),
β-glucosidase (EC 3.2.1.21) (n = 1339), and cellulose 1,4-
β-cellobiosidase (EC 3.2.1.91) (n = 36). All of which belonged to
223 different bacterial and 36 fungal genera.

The genes encoding cellulase came from 125 bacteria and
24 fungi. The 125 bacteria belonged to 73 genera. The
most abundant bacterium was Bacillus (n = 11), followed by
Thermoanaerobacter (n = 7), Pseudomonas (n = 6), Serratia
(n = 5), Paenibacillus (n = 5), Xanthomonas (n = 5), and
Methylobacterium (n = 5). Among the 24 fungi, 7 members
belonged to Aspergillus, 3 belonged to Bipolaris, 2 belonged to
Verticillium, and 2 belonged to Neurospora.

The genes encoding β-glucosidase came from 243 bacteria and
50 fungi. The 243 bacteria belonged to 142 genera. The most
abundant bacteria belonged to Pseudomonas (n = 21), followed
by Bifidobacterium (n = 10), Xanthomonas (n = 8), Paenibacillus
(n = 7), and Serratia (n = 6). The 50 fungi belonged to 20
genera, and the most abundant fungi were from Bipolaris (n = 3),
Neurospora (n = 2), Aspergillus (n = 2), and Fusarium (n = 2).

The genes encoding cellulose 1,4-β-cellobiosidase came from
11 bacteria and 14 fungi. The 11 bacteria belonged to 8 genera,
including Streptomyces (n = 3) and Cellulomonas (n = 2). The
14 fungi belonged to 12 genera, including Bipolaris (n = 2) and
Neurospora (n = 2).

In total, we found 128,707 putative GH gene of 117 GH
families in all 145 GH families of CAZy database. The 27 GH
families were more than 1%, including GH13 (n = 12,475),
GH23 (n = 12,355), GH3 (n = 10,253), GH1 (n = 6,655), and
GH2 (n = 6,548) (Supplementary Table S6). A total of 30,209
genes encoding the cellulase, β-glucosidase, and cellulose β-1,4-
cellobiosidase were also included (Supplementary Table S7).

Kyoto Encyclopedia of Genes and Genome metabolic
pathways were generated based on metagenomics to obtain the
most comprehensive image of gut microbe metabolism in GPs,
suggesting that gut microbiome of GPs features enriched activity
for metabolism of carbohydrates, nucleotides, lipids, amino acids,
energy, terpenoids, polyketides, glycan, cofactors, vitamins and
xenobiotics biodegradation, and biosynthesis of other secondary
metabolites (Figure 5).

DISCUSSION

At the phylum level, 14 bacterial groups were identified; this
finding was more than six and nine phyla found in GPs
using 16S rRNA sequencing (Zhu et al., 2011; Xue et al.,
2015). As described previously, Proteobacteria and Firmicutes
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FIGURE 4 | Average abundance of all helminths between three different groups. ∗Significant difference (p < 0.05).

constituted the vast majority of bacteria in the gut of GPs (Zhu
et al., 2011; Fang et al., 2012; Tun et al., 2014; Xue et al.,
2015). Unlike the published 16S rRNA sequencing data (Zhu
et al., 2011; Fang et al., 2012; Tun et al., 2014; Xue et al.,
2015), our metagenomic shotgun sequencing study revealed
significantly higher abundance of phyla Proteobacteria than
that of Firmicutes. Similarly, the two phyla Firmicutes and
Proteobacteria were also the predominant phyla in the gut of
both brown bear (Ursus arctos) (Sommer et al., 2016) and
Asiatic black bear (Ursus thibetanus) (Song et al., 2017). GP still
has a similarity of gut bacteria with other bears in spite of a

bamboo diet (Ley et al., 2008). Members of Bacteroidetes were
also abundant in the gut of GP, as described in cattle (Shanks
et al., 2011) and horse (Dougal et al., 2013). In general, the three
phyla, namely, Firmicutes, Bacteroidetes, and Proteobacteria,
were numerically the most dominant phyla detected in the gut
of mammals (Delsuc et al., 2014). Actinobacteria was another
phylum that could be found in the gut of humans (Krogius-
Kurikka et al., 2009), cheetahs (Becker et al., 2014), and mice
(Murphy et al., 2010); Actinobacteria was generally found in
adult GPs and absent in geriatric individuals (Tun et al., 2014).
The phylum Cyanobacteria also was detected in the gut of GPs
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TABLE 1 | Species of helminths in the gut of GPs in this study.

Family Parasitic helminths Potential host Reference

Alloionematidae Rhabditophanes sp. KR3021 Free-living Willems et al., 2005

Ancylostomatidae Ancylostoma duodenale Humans Chowdhury and Schad, 1972

Necator americanus Humans Chow et al., 2000

Anisakidae Anisakis simplex Humans Baeza et al., 2004

Ascarididae Ascaris suum Pigs Liu et al., 2012

Parascaris equorum Horses Lyons and Tolliver, 2004

Dugesiidae Schmidtea mediterranea Free-living Egger et al., 2007

Haemonchidae Haemonchus contortus Ruminants Peter and Chandrawathani, 2005

Heteroderidae Globodera pallida Plants Williamson and Hussey, 1996

Hymenolepididae Hymenolepis microstoma Rodents Macnish et al., 2003

Meloidogynidae Meloidogyne floridensis Plants Church, 2007

Meloidogyne hapla Plants Opperman et al., 2008

Mermithidae Romanomermis culicivorax Insects Powers et al., 1986

Neodiplogasteridae Pristionchus pacificus Free-living Gutierrez and Sommer, 2004

Onchocercidae Brugia timori Humans McReynolds et al., 1986

Dirofilaria immitis Dogs Kramer et al., 2005

Elaeophora elaphi Red deer Hofle et al., 2004

Onchocerca ochengi Cattles Trees, 1992

Wuchereria bancrofti Humans Gnanasekar et al., 2002

Opisthorchiidae Clonorchis sinensis Humans Wang et al., 2011

Oxyuridae Enterobius vermicularis Humans Cook, 1994

Rhabditidae Caenorhabditis angaria Free-living Gutierrez and Sommer, 2004

Caenorhabditis brenneri Free-living Diaz et al., 2010

Caenorhabditis japonica Free-living

Caenorhabditis remanei Free-living

Schistosomatidae Schistosoma rodhaini Rodents Steinauer et al., 2008

Trichobilharzia regenti Mammals and birds Lichtenbergova et al., 2011

Steinernematidae Steinernema feltiae Insects Popiel et al., 1989

Steinernema glaseri Insects Koppenhofer and Kaya, 1995

Steinernema monticolum Insects Liu et al., 1997

Steinernema scapterisci Insects Grewal et al., 1993

Strongylidae Cylicostephanus goldi Mammals Grant et al., 2006

Strongylus vulgaris Horses Nielsen et al., 2008

Strongyloididae Parastrongyloides trichosuri Mammals Grant et al., 2006

Strongyloides venezuelensis Mammals and GPs Sato and Toma, 1990; Zhang et al., 2011

Taeniidae Echinococcus canadensis Humans Schneider et al., 2010

Echinococcus granulosus Humans Torgerson and Heath, 2003

Toxocaridae Toxocara canis Mammals and humans Crompton and Savioli, 1993

Trichinellidae Trichinella nativa Mammals Pozio et al., 2001

Trichinella nelsoni Carnivores Pozio et al., 1997

Trichinella patagoniensis Mammals and birds Krivokapich et al., 2012

Trichinella pseudospiralis Mammals and birds

Trichinella sp. t9 Mammals

Trichuridae Trichuris muris Mammalians Hayes et al., 2010

Trichuris trichiura Humans Crompton and Savioli, 1993

(Zhu et al., 2011; Xue et al., 2015). However, it was only detected
in semiwild GP in our study. Living environments may influence
the abundance of Cyanobacteria in the gut of GPs. Escherichia
was the most predominant genus in GP’s gut microbiota as
described previously. Differently, majority members of abundant
genera showed different rankings in the study (Zhu et al., 2011;
Xue et al., 2015), e.g., Streptococcus, Pseudomonas, Yersinia,

and Lactococcus were the most dominant. Besides, bacteria at
species level were demonstrated using metagenomic sequencing.
As described previously, metagenomic sequencing predicted
more microbial species than 16S ribosomal RNA (rRNA) gene
sequencing (Zhernakova et al., 2016). Compared with 16S rRNA
sequencing technology, we delineated the detailed and different
gut bacteria in GPs, especially at species level. As described
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FIGURE 5 | The KEGG pathways determined using iPath of the gut microbiome.

previously, bacteria belong to phylum Firmicutes possess putative
genes coding for cellulose and hemicellulose-digesting enzymes,
especially found in species within the Clostridium genus (Zhu
et al., 2011). It is clear that gut microbial composition data
alone cannot resolve whether gut microorganisms of giant pandas
are an adaptation to a bamboo diet and aid in the digestion
of cellulose and hemicellulose. Fortunately, we identified other
potential cellulolytic and hemicellulolytic bacteria in the gut of
giant pandas using metagenomics.

The abundance of Bacteroidetes and Actinobacteria in the
gut of wild GPs was significantly higher than that in captive
and semiwild GPs. Bacteroidetes and Actinobacteria were also
discovered as the dominant phyla in the vagina and uterus of GPs
(Yang et al., 2017). High-carbohydrate and low-fat diet in natural
environments may contribute to the increase in Bacteroidetes
(Ley et al., 2006). Bacteroidetes is well-known for the degradation
of high-molecular weight organic matter (Thomas et al., 2011;
Wu et al., 2011). Besides, the Bacteroidetes are believed to
complement eukaryotic genomes with degradation enzymes
targeting resistant dietary polymers (Thomas et al., 2011).
Members of Actinobacteria were described in a prior gut study,
and they have also been associated with a variety of environments
and conditions (D’Argenio and Salvatore, 2015). Diet and
environment may lead the wild GPs to obtain these bacteria (Paul
et al., 2016; Snijders et al., 2016).

As described previously, the fungal phyla Ascomycota,
Basidiomycota, and Mucoromycota were also dominant in

the gut of GPs (Tun et al., 2014). Compared with other
mammals, the GPs had a more abundant Glomeromycota
and Mucoromycota, which were proved to be an important
arbuscular mycorrhizal fungi (Hijri et al., 2007; Spatafora et al.,
2016). Besides, the phylum Microsporidia has an important
proportion in the gut of GPs. Members of Microsporidia
are obligate intracellular eukaryotic parasites (Patrick, 2009).
At the genus level, most fungi were obviously related with
plants. Fusarium (Kistler, 1997; Kolb et al., 2001) and
Colletotrichum (O’Connell et al., 2012) served as plant pathogens.
Oidiodendron appeared to exist as saprotrophs and could
also form ericoid mycorrhizal associations with Ericaceae
hosts (Chambers et al., 2008). Rhizophagus is an arbuscular
mycorrhizal fungi that form symbiotic relationships with plant
(Tisserant et al., 2013). Piloderma is a wood ectomycorrhizal
fungus (Hagerberg et al., 2005). Besides, the members of
Tolypocladium were widespread as soil-borne insect pathogens
and saprotrophs (Mogensen et al., 2011). This discrepancy
can be attributed to dietary differences as GPs may consume
different species of bamboo, water, and many other foods
in nature, which may cause exposure of GPs to these fungi
from the diet and environment. Besides, fungi at species level
were demonstrated using metagenomic sequencing. Thus, using
metagenomic sequencing, we delineated the detailed gut fungi
of GPs.

Still now, little was known about the diversity and role of fungi
in the gut of giant pandas. Compared to bacteria, the role of fungi
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within the intestinal microbiota is poorly understood. Fungi also
play an important role in disease of host (Huffnagle and Noverr,
2013; Scott et al., 2013; Sokol et al., 2017) or produce a result of
interactions that are relevant to health and gut diseases of host
with bacteria (Peleg et al., 2010; Mar Rodriguez et al., 2015). In
addition to bacteria, fungi in gut of giant pandas harbor the genes
coding for starch, cellulose, and hemicellulose-digesting enzymes
and could also aid in the digestion of the substances in bamboo
(Zhu et al., 2011).

However, most fungus genera were abundant in semiwild and
wild GPs than that in captive GPs. The abundance and difference
of these fungi can be attributed to diet consumption. Gut
fungi may be responsible for fiber degradation and fermentative
digestion in herbivores (Li and Heath, 1993; Liggenstoffer et al.,
2010). The gut microbiota of herbivore plays a vital role in
hydrolyzing carbohydrate components of the plant cell wall
including cellulose and xylan components (Brulc et al., 2009;
Hooper and Macpherson, 2010; Hess et al., 2011; Wang et al.,
2013). In particular, anaerobic fungi are commonly found in
the digestive tract of ruminants and monogastric herbivores
(Theodorou et al., 1996; Ho et al., 2000; Ljungdahl, 2008;
Haitjema et al., 2014) and capable of producing enzymes that
efficiently hydrolyze cellulose and hemicelluloses (Ljungdahl,
2008). However, the crucial anaerobic gut fungi, which affiliate
with Class Chytridiomycetes, Order Neocallimastigales, and
Family Neocallimastigaceae, commonly harbored in many
herbivores to assist hydrolysis of cellulose (Theodorou et al.,
1996; Ho et al., 2000; Ljungdahl, 2008; Haitjema et al., 2014), were
not found in the gut of GPs in this study.

Majority of bacteriophages was found in the gut of GPs,
and most of which belonged to the order Caudovirales in
nature (Ackermann, 2003; Lim et al., 2016). Previous study
demonstrated an increase in the richness of Caudovirales
phages in the gut of patients with inflammatory bowel
disease (Norman et al., 2015). Clearly, bacteriophages can
influence the behavior and pathogenicity of bacteria, and
the interaction effect between bacteriophages and bacteria
have a significant impact on host health (Bondy-Denomy
and Davidson, 2014). The lysis of bacteria by bacteriophages
leads to release of proteins, lipids, and nucleic acids, which
could induce gut inflammation (Łusiak-Szelachowska et al.,
2017). In our study, host of bacteriophages was largely
from Enterobacteriaceae. This phenomenon displayed well the
symbiotic or parasitic relationships between the bacteriophages
and bacteria. Bacteriophages are known as regulators of the
bacterial population in the gut (Brown-Jaque et al., 2016),
capable to lyse bacterial cell and may control the bacterial
population, influencing bacterial diversity and metabolism
(Łusiak-Szelachowska et al., 2017). The bactericidal activity of
bacteriophages could be used to treat infections gradually as
an alternative or a complement to antibiotic therapy in GPs
(Sulakvelidze et al., 2001; Merril et al., 2003; Hermoso et al.,
2007). Only two prophages, Lactococcus prophage bIL286 and
Lactococcus prophage bIL309, were detected in the gut of GPs.
Prophage induction may contribute to the dysbiosis of gut
microbiota, changing the ratio of symbionts to pathobionts (Mills
et al., 2013). Most genera of bacteriophages were more abundant

in the gut of captive GPs than that in the gut of semiwild and
wild GP. Living environment is an important factor influencing
diversity of phages (Łusiak-Szelachowska et al., 2017).

We demonstrated different gut parasites using metagenomic
sequencing compared with previous studies. Baylisascaris
schroederi is the most common parasitic helminth of GPs
(Zhang et al., 2012, 2015; Zhao et al., 2013; Zhou et al.,
2013). Meanwhile, Cryptosporidium spp. (Wang et al., 2015),
Ancylostoma ailuropodae (Xie et al., 2017), Ogmocotyle sikae,
Toxascaris seleactis, and Strongyloides spp. (Zhang et al., 2011)
have also been reported to cause parasitic infection in GPs.
However, in addition to previously described parasites in GPs,
we first found another 44 helminths in GPs in this study
which were not described previously (not including Strongyloides
spp.). This discrepancy can be attributed to genomes as no
data were available in WBPS8 for those parasites found in GPs
(B. schroederi, O. sikae, A. ailuropodae, and T. seleactis). It is
worth noting that the current PH database is derived from
50 Helminth Genome Project2 (ref), and prominently biased
toward the medically important helminth genomes. Therefore,
our results should be more sensible at the family level. Among
the 45 helminth whose genomes our reads were mapped to,
30 parasitize mammals or human, strongly suggesting that GPs
are important reservoir for parasitic helminths. Several major
worldwide helminths, such as T. trichiura, Necator americanus,
Ancylostoma duodenale, Enterobius vermicularis, and T. canis
(Bundy and Cooper, 1989; Crompton and Savioli, 1993; Bethony
et al., 2006), found in humans also were detected in GPs. In
addition, several free-living nematodes, including C. angaria,
C. brenneri, C. japonica, C. remanei, and P. pacificus (Kiontke,
2006; Sommer, 2006; Rödelsperger et al., 2013), were also
identified, which were dominant in the gut of GPs. P. pacificus
was reported as living in close association with beetles (Herrmann
et al., 2006; Kiontke, 2006). Actually, the five genomes of beetle
were found highly abundant in GP’s gut metagenome sample,
which might be derived from the bamboo feeds. Besides, no
significant difference was observed for most helminths between
the three groups from different environments, suggesting that
the parasitic infection was ubiquitous in captive, semiwild, and
wild GPs.

The genes encoding cellulose catabolic enzymes were found
in bacteria or fungi of GP’s gut. The number of β-glucosidase
gene was higher than that of cellulose and cellulose β-1,4-
cellobiosidase, and the number of genes from bacteria was more
than fungi. Numerous bacteria and fungi may play a key role
in assisting the metabolism of cellulose. A large GH genes were
found, implying an active metabolism of carbohydrates in the gut
of GPs. Among the GH families found, GH13, GH23, and GH3
were obviously abundant. GH13 was the largest of the CAZYs
family, wherein many alpha-glucan active enzymes are found
and may be closely related with starch hydrolysis (Turkenburg
et al., 2009). Starch is one of the most important polysaccharides
in bamboo components (Peng et al., 2011). Family GH23
contains lysozymes and soluble lytic transglycosylase (Tufariello
et al., 2006). The lytic transglycosylases are an important

2http://www.sanger.ac.uk/science/collaboration/50hgp

Frontiers in Microbiology | www.frontiersin.org 11 July 2018 | Volume 9 | Article 1717

http://www.sanger.ac.uk/science/collaboration/50hgp
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01717 July 31, 2018 Time: 12:46 # 12

Yang et al. Gut Microbiota of Giant Pandas

class of bacterial enzymes as a class of autolysins (Blackburn
and Clarke, 2001; Scheurwater et al., 2008). In addition, the
lytic transglycosylases may have a role in pathogenesis of
some bacterial species (Boneca, 2005). Family GH3 consists
primarily of stereochemistry-retaining β-glucosidases and also
contains a subfamily of β-N-acetylglucosaminidases (Macdonald
et al., 2015). Importantly, GH1 and GH2 are gene families
with hemicellulose degrading activity, including β-glucosidase,
β-galactosidase, β-mannosidase, β-glucuronidase,β-xylosidase,
glucan 1,3-β-glucosidase, glucan 1,4-β-glucosidase and xylan
1,4-β-xylosidase, etc. Besides, GH1, GH2, and GH3 are also
an important family of enzyme with β-glucosidase activity
(Kuntothom et al., 2009; Heins et al., 2011; Talens-Perales et al.,
2016) associated with cellulose and hemicellulose degrading
activity. Therefore, the study indicated that the microbiota in GPs
harbor the ability of cellulose and hemicellulose degradation.

CONCLUSION

We provided full details of microbiota structure, including
bacteria, fungi, bacteriophages, and helminths based on
metagenomic sequencing, in the gut of GPs. Totally, 680 species
of bacteria, 198 species of fungi, 185 bacteriophages, and 45
helminths were found. 44 helminths were first reported in the
gut of GPs, among which 30 PH were found in mammals or
humans suggesting that GPs are important reservoir for parasitic
helminths. 1,739 genes encoding cellulase, β-glucosidase,
and cellulose β-1,4-cellobiosidase were responsible for the
metabolism of cellulose, and 128,707 putative GH genes were
found in numerous bacteria and fungi, revealing that the
microbiota in GPs harbor the ability of cellulose, hemicellulose
and starch hydrolysis. The abundance of Bacteroidetes and
Actinobacteria in wild GPs was significantly higher than that in
captive and semiwild GPs (p < 0.05). Only a few of bacteria, fungi,
bacteriophages, and helminths at genus or species level were
found significantly different between the three groups (p < 0.05).
Taken together, the results indicated not only bacteria but also
fungi, bacteriophages, and helminths were diverse in gut of giant

pandas providing basis for the further identification of role of
gut microbiota. Metagenomics revealed that the bacteria/fungi
in gut of GPs harbor the ability of cellulose and hemicellulose
degradation. Besides species within the Clostridium genus,
majority of bacteria and fungi were also found to aid in the
digestion of cellulose and hemicellulose in the gut of giant pandas.
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