177 research outputs found

    Encoding of amplitude modulations by auditory neurons of the locust: influence of modulation frequency, rise time, and modulation depth

    Get PDF
    Using modulation transfer functions (MTF), we investigated how sound patterns are processed within the auditory pathway of grasshoppers. Spike rates of auditory receptors and primary-like local neurons did not depend on modulation frequencies while other local and ascending neurons had lowpass, bandpass or bandstop properties. Local neurons exhibited broader dynamic ranges of their rate MTF that extended to higher modulation frequencies than those of most ascending neurons. We found no indication that a filter bank for modulation frequencies may exist in grasshoppers as has been proposed for the auditory system of mammals. The filter properties of half of the neurons changed to an allpass type with a 50% reduction of modulation depths. Contrasting to reports for mammals, the sensitivity to small modulation depths was not enhanced at higher processing stages. In ascending neurons, a focus on the range of low modulation frequencies was visible in the temporal MTFs, which describe the temporal locking of spikes to the signal envelope. To investigate the influence of stimulus rise time, we used rectangularly modulated stimuli instead of sinusoidally modulated ones. Unexpectedly, steep stimulus onsets had only small influence on the shape of MTF curves of 70% of neurons in our sample

    Flower Bats (Glossophaga soricina) and Fruit Bats (Carollia perspicillata) Rely on Spatial Cues over Shapes and Scents When Relocating Food

    Get PDF
    Natural selection can shape specific cognitive abilities and the extent to which a given species relies on various cues when learning associations between stimuli and rewards. Because the flower bat Glossophaga soricina feeds primarily on nectar, and the locations of nectar-producing flowers remain constant, G. soricina might be predisposed to learn to associate food with locations. Indeed, G. soricina has been observed to rely far more heavily on spatial cues than on shape cues when relocating food, and to learn poorly when shape alone provides a reliable cue to the presence of food.Here we determined whether G. soricina would learn to use scent cues as indicators of the presence of food when such cues were also available. Nectar-producing plants fed upon by G. soricina often produce distinct, intense odors. We therefore expected G. soricina to relocate food sources using scent cues, particularly the flower-produced compound, dimethyl disulfide, which is attractive even to G. soricina with no previous experience of it. We also compared the learning of associations between cues and food sources by G. soricina with that of a related fruit-eating bat, Carollia perspicillata. We found that (1) G. soricina did not learn to associate scent cues, including dimethyl disulfide, with feeding sites when the previously rewarded spatial cues were also available, and (2) both the fruit-eating C. perspicillata and the flower-feeding G. soricina were significantly more reliant on spatial cues than associated sensory cues for relocating food.These findings, taken together with past results, provide evidence of a powerful, experience-independent predilection of both species to rely on spatial cues when attempting to relocate food

    Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Get PDF
    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers

    The psychophysics of uneconomical choice: non-linear reward evaluation by a nectar feeder

    Get PDF
    Uneconomical choices by humans or animals that evaluate reward options challenge the expectation that decision-makers always maximize the return currency. One possible explanation for such deviations from optimality is that the ability to sense differences in physical value between available alternatives is constrained by the sensory and cognitive processes for encoding profitability. In this study, we investigated the capacity of a nectarivorous bat species (Glossophaga commissarisi) to discriminate between sugar solutions with different concentrations. We conducted a two-alternative free-choice experiment on a population of wild electronically tagged bats foraging at an array of computer-automated artificial flowers that recorded individual choices. We used a Bayesian approach to fit individual psychometric functions, relating the strength of preferring the higher concentration option to the intensity of the presented stimulus. Psychometric analysis revealed that discrimination ability increases non-linearly with respect to intensity. We combined this result with a previous psychometric analysis of volume perception. Our theoretical analysis of choice for rewards that vary in two quality dimensions revealed regions of parameter combinations where uneconomic choice is expected. Discrimination ability may be constrained by non-linear perceptual and cognitive encoding processes that result in uneconomical choice

    Relationship between Spatial Working Memory Performance and Diet Specialization in Two Sympatric Nectar Bats

    Get PDF
    Behavioural ecologists increasingly recognise spatial memory as one the most influential cognitive traits involved in evolutionary processes. In particular, spatial working memory (SWM), i.e. the ability of animals to store temporarily useful information for current foraging tasks, determines the foraging efficiency of individuals. As a consequence, SWM also has the potential to influence competitive abilities and to affect patterns of sympatric occurrence among closely related species. The present study aims at comparing the efficiency of SWM between generalist (Glossophaga soricina) and specialist (Leptonycteris yerbabuenae) nectarivorous bats at flowering patches. The two species differ in diet – the generalist diet including seasonally fruits and insects with nectar and pollen while the specialist diet is dominated by nectar and pollen yearlong – and in some morphological traits – the specialist being heavier and with proportionally longer rostrum than the generalist. These bats are found sympatrically within part of their range in the Neotropics. We habituated captive individuals to feed on artificial flower patches and we used infrared video recordings to monitor their ability to remember and avoid the spatial location of flowers they emptied in previous visits in the course of 15-min foraging sequences. Experiments revealed that both species rely on SWM as their foraging success attained significantly greater values than random expectations. However, the nectar specialist L. yerbabuenae was significantly more efficient at extracting nectar (+28% in foraging success), and sustained longer foraging bouts (+27% in length of efficient foraging sequences) than the generalist G. soricina. These contrasting SWM performances are discussed in relation to diet specialization and other life history traits

    Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus

    Get PDF
    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development

    Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum

    Get PDF
    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general

    Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds

    Get PDF
    Along food chains, i.e., at different trophic levels, the most abundant taxa often represent exceptional food reservoirs, and are hence the main target of consumers and predators. The capacity of an individual consumer to opportunistically switch towards an abundant food source, for instance, a prey that suddenly becomes available in its environment, may offer such strong selective advantages that ecological innovations may appear and spread rapidly. New predator-prey relationships are likely to evolve even faster when a diet switch involves the exploitation of an unsaturated resource for which few or no other species compete. Using stable isotopes of carbon and nitrogen as dietary tracers, we provide here strong support to the controversial hypothesis that the giant noctule bat Nyctalus lasiopterus feeds on the wing upon the multitude of flying passerines during their nocturnal migratory journeys, a resource which, while showing a predictable distribution in space and time, is only seasonally available. So far, no predator had been reported to exploit this extraordinarily diverse and abundant food reservoir represented by nocturnally migrating passerines

    Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    Get PDF
    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats
    corecore