25 research outputs found

    [10]-gingerol induces apoptosis and inhibits metastatic dissemination of triple negative breast cancer in vivo

    Get PDF
    There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin (Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo. We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro. In addition, [10]-gingerol is well tolerated in vivo, induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients

    Snake Venom Disintegrins and Cell Migration

    Get PDF
    Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion

    Effects of Doxorubicin, Cisplatin, and Tamoxifen on the Metabolic Profile of Human Breast Cancer MCF‑7 Cells As Determined by <sup>1</sup>H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance

    No full text
    Doxorubicin (Doxo), cisplatin (Cis), and tamoxifen (Tamo) are part of many chemotherapeutic regimens. However, there have been limited studies of the way metabolism in breast cancer is affected by chemotherapy. We studied, through <sup>1</sup>H high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, the metabolic profile of human breast cancer MCF-7 control (Con) cells as well as MCF-7 cells treated with Tamo, Cis, and Doxo. <sup>1</sup>H HR-MAS NMR single-pulse spectra evidenced signals from the cell compounds, including fatty acids (membranes), water-soluble proteins, and metabolites. The spectra showed that phosphocholine (i.e., biomarker of breast cancer malignant transformation) signals were stronger in Con than in treated cells. Betaine (i.e., the major osmolyte in cells) was observed at similar concentrations in MCF-7 control and treated cells but was absent in nontumor MCF-10A cells. The NMR spectra acquired with the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence were used only in qualitative analyses because the signal areas were attenuated according to their transverse relaxation time (<i>T</i><sub>2</sub>). The CPMG method was used to identify soluble metabolites such as organic acids, amino acids, choline and its derivatives, taurine, and guanidino acetate. <sup>1</sup>H HR-MAS NMR spectroscopy efficiently demonstrated the effects of Tamo, Cis, and Doxo on the metabolic profile of MCF-7 cells. The fatty acid, phosphocholine, and choline variations observed by single-pulse HR-MAS NMR have the potential to characterize both responder and nonresponder tumors at a molecular level

    The specificity of frutalin lectin using biomembrane models

    No full text
    Frutalin is a homotetrameric alpha-D-galactose (D-Gal)-binding lectin that activates natural killer cells in vitro and promotes leukocyte migration in vivo. Because lectins are potent lymphocyte stimulators, understanding the interactions that occur between them and cell surfaces can help to the action mechanisms involved in this process. In this paper, we present a detailed investigation of the interactions of frutalin with phospho- and glycolipids using Langmuir monolayers as biomembrane models. The results confirm the specificity of frutalin for D-Gal attached to a biomembrane. Adsorption of frutalin was more efficient for the galactose polar head lipids, in contrast to the one for sulfated galactose, in which a lag time is observed, indicating a rearrangement of the monolayer to incorporate the protein. Regarding ganglioside GM1 monolayers, lower quantities of the protein were adsorbed, probably due to the farther apart position of D-galactose from the interface. Binary mixtures containing galactocerebroside revealed small domains formed at high lipid packing in the presence of frutalin, suggesting that lectin induces the clusterization and the forming of domains in vitro, which may be a form of receptor internalization. This is the first experimental evidence of such lectin effect, and it may be useful to understand the mechanism of action of lectins at the molecular level. (C) 2010 Elsevier B.V. All rights reserved.FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Effects of Resistance Training on Matrix Metalloproteinase Activity in Skeletal Muscles and Blood Circulation During Aging

    No full text
    Aging is a complex, multifactorial process characterized by the accumulation of deleterious effects, including biochemical adaptations of the extracellular matrix (ECM). The purpose of this study was to investigate the effects of 12 weeks of resistance training (RT) on metalloproteinase 2 (MMP-2) activity in skeletal muscles and, MMP-2 and MMP-9 activity in the blood circulation of young and old rats. Twenty-eight Wistar rats were randomly divided into four groups (n = 7 per group): young sedentary (YS); young trained (YT), old sedentary (OS), and old trained (OT). The stair climbing RT consisted of one training session every 2 other day, with 8–12 dynamic movements per climb. The animals were euthanized 48 h after the end of the experimental period. MMP-2 and MMP-9 activity was measured by zymography. There was higher active MMP-2 activity in the lateral gastrocnemius and flexor digitorum profundus muscles in the OT group when compared to the OS, YS, and YT groups (p ≤ 0.001). Moreover, there was higher active MMP-2 activity in the medial gastrocnemius muscle in the OT group when compared to the YS and YT groups (p ≤ 0.001). The YS group presented lower active MMP-2 activity in the soleus muscle than the YT, OS, OT groups (p ≤ 0.001). With respect to active MMP-2/9 activity in the bloodstream, the OT group displayed significantly reduced activity (p ≤ 0.001) when compared to YS and YT groups. In conclusion, RT up-regulates MMP-2 activity in aging muscles, while down-regulating MMP-2 and MMP-9 in the blood circulation, suggesting that it may be a useful tool for the maintenance of ECM remodeling

    Synthesis, characterization and cytotoxic activities of the [RuCl(2)(NO)(dppp)(L)]PF(6) complexes

    No full text
    The synthesis and characterization of ruthenium compounds of the type [RuCl(2)(NO)(dppp)(L)]PF(6) [dppp = 1,3-bis(diphenylphosphino)propane; L = pyridine, 4-methylpyridine, 4-phenylpyridine and dimethyl sulfoxide] are described. The complexes were characterized by elemental analysis, UV/Vis and infrared spectroscopy, cyclic voltammetry, and X-ray crystallography for the complexes with the pyridine and 4-methylpyridine ligands. In vitro evaluation of these nitrosyl complexes revealed cytotoxic activity from 7.1 to 19.0 mu M against the MDA-MB-231 breast tumor cells and showed that, in this case, they are more active than the reference metallodrug cisplatin. The 1,3-bis(diphenylphosphino)propane and the N-heterocyclic ligands alone failed to show cytotoxic activities at the concentrations tested (maximum concentration utilized = 200 mu M). (C) 2009 Elsevier Inc. All rights reserved.CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPESFINEPFinanciadora de Estudos e Projetos (FINEP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)PRONEXFAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer

    No full text
    Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this “αvβ3 integrin addiction” can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients

    Recombinant disintegrin targets alpha(v) beta(3) integrin and leads to mediator production

    No full text
    Integrin alpha v beta 3 is most likely the foremost modulator of angiogenesis among all known integrins. Recombinant disintegrin DisBa-01, originally obtained from snake venom glands, binds to alpha v beta 3, thereby significantly inhibiting adhesion and generating in vivo anti-metastatic ability. However, its function in mediator production is not clear. Here, we observed that the mediators VEGF-A, IL-8, and TGF-beta are not produced by human umbilical vein endothelial cells (HUVEC cell line) or monocyte/macrophage cells (SC cell line) when cells adhered to vitronectin. However, when exposed to DisBa-01, HUVECs produced higher levels of TGF-beta, and SC cells produced higher levels of VEGF-A. Nonetheless, HUVECs also showed an enhancement of apoptosis after losing adherence when exposed to disintegrin, which is a characteristic of anoikis. We propose that disintegrin DisBa-01 could be used to modulate integrin alpha v beta 3 functions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells

    No full text
    Abstract Background Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvβ3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvβ3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvβ3/VEGFR2 cross-talk and its downstream pathways. Methods Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvβ3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. Results DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvβ3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and β3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvβ3 integrin and VEGFR2 in treated cells. Conclusions Disintegrin inhibition of αvβ3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis
    corecore