55 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Intrazelluläre Signalkaskaden II

    No full text

    MICROSCOPIC MULTICHANNEL SPECTROMETER FOR LIGHT ABSORPTION MEASUREMENTS OF PIGMENTS INSIDE OF MAMMALIAN CELLS

    No full text
    During the evolution process most cells have learned to use oxygen for establishing higher functional regulations. For this purpose different proteins have been developed which are able to react with oxygen; as for instance hemoglobin and myoglobin for oxygen transport and storage or cytochromes, which act in the respiratory chain as electron carriers to reduce oxygen to water for generating energy. Also other proteins are known, like oxidases, which are involved in the reduction of oxygen. The question was therefore addressed, whether monitoring of the activity of these proteins in dependence on the oxygen partial pressure can be used to construct a biosensor for oxygen

    Unusual cytochrome a592 with low PO2 affinity correlates as putative oxygen sensor with rat carotid body chemoreceptor discharge

    No full text
    Light-absorption spectra and afferent chemoreceptor discharge were simultaneously recorded on superfused rat carotid bodies (CBs) under the influence of cytochrome a3-Cu-B ligands (O-2, CN-, CO) in order to identify the primary mitochondrial cytochrome c oxidase (CCO) oxygen sensor. Spectra could be described on the basis of weighted light-absorption spectra of cytochrome b(558) of the NAD(P)H oxidase and mitochondrial cytochromes b and c, CCO, cytochrome a3, and an unusual cytochrome a peaking at 592 nm. Discharge signals were deconvoluted into phasic and tonic activity for comparing different CB responses. The spectral weight of cytochrome a(592) decreased significantly starting at high PO2 (100 mm Hg) and low sodium cyanide (CN-, 10 muM) accompanied by increasing phasic peak discharge. Combined CO-hypoxia or CO-CN- application inhibited photolysis of CO-stimulated chemoreceptor discharge, revealing photometrically cytochrome a(592) as central in oxygen sensing. Control spectra in tissue from sympathetic and nodose ganglia did not show any cytochrome a(592) contribution. According to these results, cytochrome a(592) is assumed as a unique component of CB CCO, revealing in contrast to other cytochromes an apparent low PO2 and high CN- affinity, probably due to a shortcut of electron flow within CCO between Cu-A and cytochrome a3-Cu-B
    corecore