2,278 research outputs found
Advanced Gas Turbine (AGT): Power-train system development
Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine is described. The general effort was concentrated on building an engine for test starting in July. The buildup progressed with only routine problems and the engine was delivered to the test stand 9 July. In addition to the engine build effort, work continued in selected component areas. Ceramic turbine parts were built and tested. Burst tests of ceramic rotors show strengths are approaching that achieved in test bars; proof testing is required for acceptable strength ceramic vanes. Over 25 hours was accumulated on the combustor rig in three test modes: pilot nozzle only, start nozzle, and main nozzle operation. Satisfactory ignition was achieved for a wide range of starting speeds and the lean blowout limit was as low as 0.06 kg/b (0.14 lb/hr). Lean blowout was more a function of nozzle atomization than fuel/air ratio. A variety of cycle points were tested. Transition from start nozzle flow to main nozzle flow was done manually without difficulty. Regenerator parts were qualification tested without incident and the parts were assembled on schedule. Rig based performance matched first build requirements. Repeated failures in the harmonic drive gearbox during rig testing resulted in that concept being abandoned for an alternate scheme
Brain tissue properties differentiate between motor and limbic basal ganglia circuits
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcom
A Fascinating Polynomial Sequence arising from an Electrostatics Problem on the Sphere
A positive unit point charge approaching from infinity a perfectly spherical
isolated conductor carrying a total charge of +1 will eventually cause a
negatively charged spherical cap to appear. The determination of the smallest
distance ( is the dimension of the unit sphere) from the point
charge to the sphere where still all of the sphere is positively charged is
known as Gonchar's problem. Using classical potential theory for the harmonic
case, we show that is equal to the largest positive zero of a
certain sequence of monic polynomials of degree with integer
coefficients which we call Gonchar polynomials. Rather surprisingly,
is the Golden ratio and the lesser known Plastic number. But Gonchar
polynomials have other interesting properties. We discuss their factorizations,
investigate their zeros and present some challenging conjectures.Comment: 12 pages, 6 figures, 1 tabl
Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017.
This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers
Neurobiological origin of spurious brain morphological changes: A quantitative MRI study.
The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc
Flow field studies using holographic interferometry at Langley
Some of the uses of holographic interferometry at Langley Research Center both for flow visualization and for density field determinations are described and tests in cryogenic flows at the Langley 0.3-Meter Transonic Cryogenic Tunnel are discussed. Experimental and theoretical fringe shift data are compared
Structure and oxidation kinetics of the Si(100)-SiO2 interface
We present first-principles calculations of the structural and electronic
properties of Si(001)-SiO2 interfaces. We first arrive at reasonable structures
for the c-Si/a-SiO2 interface via a Monte-Carlo simulated annealing applied to
an empirical interatomic potential, and then relax these structures using
first-principles calculations within the framework of density-functional
theory. We find a transition region at the interface, having a thickness on the
order of 20\AA, in which there is some oxygen deficiency and a corresponding
presence of sub-oxide Si species (mostly Si^+2 and Si^+3). Distributions of
bond lengths and bond angles, and the nature of the electronic states at the
interface, are investigated and discussed. The behavior of atomic oxygen in
a-SiO2 is also investigated. The peroxyl linkage configuration is found to be
lower in energy than interstitial or threefold configurations. Based on these
results, we suggest a possible mechanism for oxygen diffusion in a-SiO2 that
may be relevant to the oxidation process.Comment: 7 pages, two-column style with 6 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_sio
- …