54 research outputs found

    Isotopic Dependence of the Nuclear Caloric Curve

    Get PDF
    The A/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. A stable beam of 124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z of the produced spectator sources, consistent with predictions for expanded systems. Small Coulomb effects (\Delta T \approx 0.6 MeV) appear for residue production near the onset of multifragmentation.Comment: 11 pages, 3 figures, accepted for publ. in Phys. Rev. Let

    Measurement of the 92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation

    Get PDF
    The Coulomb Dissociation (CD) cross sections of the stable isotopes 92,94,100Mo and of the unstable isotope 93Mo were measured at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Experimental data on these isotopes may help to explain the problem of the underproduction of 92,94Mo and 96,98Ru in the models of p-process nucleosynthesis. The CD cross sections obtained for the stable Mo isotopes are in good agreement with experiments performed with real photons, thus validating the method of Coulomb Dissociation. The result for the reaction 93Mo(γ,n) is especially important since the corresponding cross section has not been measured before. A preliminary integral Coulomb Dissociation cross section of the 94Mo(γ,n) reaction is presented. Further analysis will complete the experimental database for the (γ,n) production chain of the p-isotopes of molybdenum

    Reviewing the science-policy relationship: The policy as theory alternative (PAST)

    No full text
    A concept is developed of the science-policy relationship that builds on the notion of policy as theory; policy is seen as developing its own `quasi-scientific' imperatives, leading to an informal knowledge production that is policy-specific rather than bound to science. The science-policy dialogue can be understood and manageed in this light

    DEVELOPMENT OF A CELL-BASED TREATMENT FOR LONG-TERM NEUROTROPHIN EXPRESSION AND SPIRAL GANGLION NEURON SURVIVAL

    Get PDF
    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness
    corecore