18 research outputs found

    Impact of acute versus repetitive moderate intensity endurance exercise on kidney injury markers.

    Get PDF
    Exercise may lead to kidney injury through several mechanisms. Urinary Kidney Injury Molecule-1 (uKIM1) and Neutrophil Gelatinase-Associated Lipocalin (uNGAL) are known biomarkers for acute kidney injury, but their response to repetitive exercise remains unknown. We examined the effects of a single versus repetitive bouts of exercise on markers for kidney injury in a middle-aged population. Sixty subjects (aged 29-78 years, 50% male) were included and walked 30, 40 or 50 km for three consecutive days. At baseline and after exercise day 1 and 3, a urine sample was collected to determine uNGAL and uKIM1. Furthermore, urinary cystatin C, creatinine, and osmolality were used to correct for dehydration-related changes in urinary concentration. Baseline uNGAL was 9.2 (5.2-14.7) ng/mL and increased to 20.7 (11.0-37.2) ng/mL and 14.2(8.0-26.3) ng/mL after day 1 and day 3, respectively, (P ≤ 0.001). Baseline uKIM1 concentration was 2.6 (1.4-6.0) ng/mL and increased to 5.2 (2.4-9.1) ng/mL (P = 0.002) after day 1, whereas uKIM1 was not different from baseline at day 3 (2.9 [1.4-6.4] ng/mL (P = 0.52)). Furthermore, both uNGAL and uKIM1 levels were higher after day 1 compared to day 3 (P < 0.01). When corrected for urinary cystatin C, creatinine, and osmolality, uNGAL demonstrated a similar response compared to the uncorrected data, whereas differences in uKIM1 between baseline, day 1 and day 3 (Ptime = 0.63) were no longer observed for cystatin C and creatinine corrected data. A single bout of prolonged exercise significantly increased uNGAL concentration, whereas no changes in uKIM1 were found. Repetitive bouts of exercise show that there is no cumulative effect of kidney injury markers

    Diagnostic and Prognostic Utility of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with Cardiovascular Diseases - Review

    No full text
    NGAL (neutrophil gelatinase-associated lipocalin) is an acute phase protein, participating in antibacterial immunity. NGAL forms a complex with metalloproteinase 9 (MMP-9), thereby increasing its activity and preventing its degradation. NGAL is freely filtered through the glomerular membrane and reabsorbed by endocytosis in the proximal tubule. NGAL detected in urine is produced mainly in the distal nephron. Elevated serum and urine NGAL allows diagnosis of acute kidney injury approximately 24 hours earlier than plasma creatinine concentration. Increased levels of NGAL were detected in patients with acute myocardial infarction, heart failure or stroke and were demonstrated to be strong predictors of adverse prognosis

    Problems with Bazett QTc correction in paediatric screening of prolonged QTc interval

    No full text
    Background Bazett formula is frequently used in paediatric screening for the long QT syndrome (LQTS) and proposals exist that using standing rather than supine electrocardiograms (ECG) improves the sensitivity of LQTS diagnosis. Nevertheless, compared to adults, children have higher heart rates (especially during postural provocations) and Bazett correction is also known to lead to artificially prolonged QTc values at increased heart rates. This study assessed the incidence of erroneously increased QTc values in normal children without QT abnormalities. Methods Continuous 12-lead ECGs were recorded in 332 healthy children (166 girls) aged 10.7 ± 2.6 years while they performed postural manoeuvring consisting of episodes (in the following order) of supine, sitting, standing, supine, standing, sitting, and supine positions, each lasting 10 min. Detailed analyses of QT/RR profiles confirmed the absence of prolonged individually corrected QTc interval in each child. Heart rate and QT intervals were measured in 10-s ECG segments and in each segment, QTc intervals were obtained using Bazett, Fridericia, and Framingham formulas. In each child, the heart rates and QTc values obtained during supine, sitting and standing positions were averaged. QTc durations by the three formulas were classified to  480 ms. Results At supine position, averaged heart rate was 77.5 ± 10.5 beat per minute (bpm) and Bazett, Fridericia and Framingham QTc intervals were 425.3 ± 15.8, 407.8 ± 13.9, and 408.2 ± 13.1 ms, respectively. At sitting and standing, averaged heart rate increased to 90.9 ± 10.1 and 100.9 ± 10.5 bpm, respectively. While Fridericia and Framingham formulas showed only minimal QTc changes, Bazett correction led to QTc increases to 435 ± 15.1 and 444.9 ± 15.9 ms at sitting and standing, respectively. At sitting, Bazett correction identified 51, 4, and 0 children as having the QTc intervals 440–460, 460–480, and > 480 ms, respectively. At sitting, these numbers increased to 118, 11, and 1, while on standing these numbers were 151, 45, and 5, respectively. Irrespective of the postural position, Fridericia and Framingham formulas identified only a small number (< 7) of children with QT interval between 440 and 460 ms and no children with longer QTc. Conclusion During screening for LQTS in children, the use of Bazett formula leads to a high number of false positive cases especially if the heart rates are increased (e.g. by postural manoeuvring). The use of Fridericia formula can be recommended to replace the Bazett correction not only for adult but also for paediatric ECGs

    Kinetics of Biomarkers of Oxidative Stress in Septic Shock: A Pilot Study

    No full text
    Septic shock is a major cause of mortality in ICU patients, its pathophysiology is complex and not properly understood. Oxidative stress seems to be one of the most important mechanisms of shock progression to multiple organ failure. In the present pilot study, we have analysed eight oxidative-stress-related biomarkers in seven consecutive time points (i.e., the first seven days) in 21 septic shock patients admitted to the ICU. Our objective was to describe the kinetics of four biomarkers related to pro-oxidative processes (nitrite/nitrate, malondialdehyde, 8-oxo-2′-deoxyguanosine, soluble endoglin) compared to four biomarkers of antioxidant processes (the ferric reducing ability of plasma, superoxide dismutase, asymmetric dimethylarginine, mid-regional pro-adrenomedullin) and four inflammatory biomarkers (CRP, IL-6, IL-10 and neopterin). Furthermore, we analysed each biomarker’s ability to predict mortality at the time of admission and 12 h after admission. Although a small number of study subjects were recruited, we have identified four promising molecules for further investigation: soluble endoglin, superoxide dismutase, asymmetric dimethylarginine and neopterin

    Kinetics of Biomarkers of Oxidative Stress in Septic Shock: A Pilot Study

    No full text
    Septic shock is a major cause of mortality in ICU patients, its pathophysiology is complex and not properly understood. Oxidative stress seems to be one of the most important mechanisms of shock progression to multiple organ failure. In the present pilot study, we have analysed eight oxidative-stress-related biomarkers in seven consecutive time points (i.e., the first seven days) in 21 septic shock patients admitted to the ICU. Our objective was to describe the kinetics of four biomarkers related to pro-oxidative processes (nitrite/nitrate, malondialdehyde, 8-oxo-2&prime;-deoxyguanosine, soluble endoglin) compared to four biomarkers of antioxidant processes (the ferric reducing ability of plasma, superoxide dismutase, asymmetric dimethylarginine, mid-regional pro-adrenomedullin) and four inflammatory biomarkers (CRP, IL-6, IL-10 and neopterin). Furthermore, we analysed each biomarker&rsquo;s ability to predict mortality at the time of admission and 12 h after admission. Although a small number of study subjects were recruited, we have identified four promising molecules for further investigation: soluble endoglin, superoxide dismutase, asymmetric dimethylarginine and neopterin
    corecore