243 research outputs found

    Cortical Factor Feedback Model for Cellular Locomotion and Cytofission

    Get PDF
    Eukaryotic cells can move spontaneously without being guided by external cues. For such spontaneous movements, a variety of different modes have been observed, including the amoeboid-like locomotion with protrusion of multiple pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium, cell division with two daughter cells crawling in opposite directions, and fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed that cells exhibit these modes depending on which genes are deficient, suggesting that seemingly different modes are the manifestation of a common mechanism to regulate cell motion. In this paper, we propose a hypothesis that the positive feedback mechanism working through the inhomogeneous distribution of regulatory proteins underlies this variety of cell locomotion and cytofission. In this hypothesis, a set of regulatory proteins, which we call cortical factors, suppress actin polymerization. These suppressing factors are diluted at the extending front and accumulated at the retracting rear of cell, which establishes a cellular polarity and enhances the cell motility, leading to the further accumulation of cortical factors at the rear. Stochastic simulation of cell movement shows that the positive feedback mechanism of cortical factors stabilizes or destabilizes modes of movement and determines the cell migration pattern. The model predicts that the pattern is selected by changing the rate of formation of the actin-filament network or the threshold to initiate the network formation

    Towards an integrated crowdsourcing definition

    Full text link
    Crowdsourcing is a relatively recent concept that encompasses many practices. This diversity leads to the blurring of the limits of crowdsourcing that may be identified virtually with any type of internet-based collaborative activity, such as co-creation or user innovation. Varying definitions of crowdsourcing exist, and therefore some authors present certain specific examples of crowdsourcing as paradigmatic, while others present the same examples as the opposite. In this article, existing definitions of crowdsourcing are analysed to extract common elements and to establish the basic characteristics of any crowdsourcing initiative. Based on these existing definitions, an exhaustive and consistent definition for crowdsourcing is presented and contrasted in 11 cases.Estelles Arolas, E.; González-Ladrón-De-Guevara, F. (2012). Towards an integrated crowdsourcing definition. Journal of Information Science. 32(2):189-200. doi:10.1177/0165551512437638S189200322Vukovic, M., & Bartolini, C. (2010). Towards a Research Agenda for Enterprise Crowdsourcing. Leveraging Applications of Formal Methods, Verification, and Validation, 425-434. doi:10.1007/978-3-642-16558-0_36Brabham, D. C. (2008). Crowdsourcing as a Model for Problem Solving. Convergence: The International Journal of Research into New Media Technologies, 14(1), 75-90. doi:10.1177/1354856507084420Vukovic, M. (2009). Crowdsourcing for Enterprises. 2009 Congress on Services - I. doi:10.1109/services-i.2009.56Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the World-Wide Web. Communications of the ACM, 54(4), 86. doi:10.1145/1924421.1924442Brabham, D. C. (2008). Moving the crowd at iStockphoto: The composition of the crowd and motivations for participation in a crowdsourcing application. First Monday, 13(6). doi:10.5210/fm.v13i6.2159Huberman, B. A., Romero, D. M., & Wu, F. (2009). Crowdsourcing, attention and productivity. Journal of Information Science, 35(6), 758-765. doi:10.1177/0165551509346786Andriole, S. J. (2010). Business impact of Web 2.0 technologies. Communications of the ACM, 53(12), 67. doi:10.1145/1859204.1859225Denyer, D., Tranfield, D., & van Aken, J. E. (2008). Developing Design Propositions through Research Synthesis. Organization Studies, 29(3), 393-413. doi:10.1177/0170840607088020Egger, M., Smith, G. D., & Altman, D. G. (Eds.). (2001). Systematic Reviews in Health Care. doi:10.1002/9780470693926Tatarkiewicz, W. (1980). A History of Six Ideas. doi:10.1007/978-94-009-8805-7Cosma, G., & Joy, M. (2008). Towards a Definition of Source-Code Plagiarism. IEEE Transactions on Education, 51(2), 195-200. doi:10.1109/te.2007.906776Brabham, D. C. (2009). Crowdsourcing the Public Participation Process for Planning Projects. Planning Theory, 8(3), 242-262. doi:10.1177/1473095209104824Alonso, O., & Lease, M. (2011). Crowdsourcing 101. Proceedings of the fourth ACM international conference on Web search and data mining - WSDM ’11. doi:10.1145/1935826.1935831Bederson, B. B., & Quinn, A. J. (2011). Web workers unite! addressing challenges of online laborers. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11. doi:10.1145/1979742.1979606Grier, D. A. (2011). Not for All Markets. Computer, 44(5), 6-8. doi:10.1109/mc.2011.155Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception. Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10. doi:10.1145/1753326.1753357Heymann, P., & Garcia-Molina, H. (2011). Turkalytics. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963473Kazai, G. (2011). In Search of Quality in Crowdsourcing for Search Engine Evaluation. Advances in Information Retrieval, 165-176. doi:10.1007/978-3-642-20161-5_17La Vecchia, G., & Cisternino, A. (2010). Collaborative Workforce, Business Process Crowdsourcing as an Alternative of BPO. Lecture Notes in Computer Science, 425-430. doi:10.1007/978-3-642-16985-4_40Liu, E., & Porter, T. (2010). Culture and KM in China. VINE, 40(3/4), 326-333. doi:10.1108/03055721011071449Oliveira, F., Ramos, I., & Santos, L. (2010). Definition of a Crowdsourcing Innovation Service for the European SMEs. Lecture Notes in Computer Science, 412-416. doi:10.1007/978-3-642-16985-4_37Porta, M., House, B., Buckley, L., & Blitz, A. (2008). Value 2.0: eight new rules for creating and capturing value from innovative technologies. Strategy & Leadership, 36(4), 10-18. doi:10.1108/10878570810888713Ribiere, V. M., & Tuggle, F. D. (Doug). (2010). Fostering innovation with KM 2.0. VINE, 40(1), 90-101. doi:10.1108/03055721011024955Sloane, P. (2011). The brave new world of open innovation. Strategic Direction, 27(5), 3-4. doi:10.1108/02580541111125725Wexler, M. N. (2011). Reconfiguring the sociology of the crowd: exploring crowdsourcing. International Journal of Sociology and Social Policy, 31(1/2), 6-20. doi:10.1108/01443331111104779Whitla, P. (2009). Crowdsourcing and Its Application in Marketing Activities. Contemporary Management Research, 5(1). doi:10.7903/cmr.1145Yang, J., Adamic, L. A., & Ackerman, M. S. (2008). Crowdsourcing and knowledge sharing. Proceedings of the 9th ACM conference on Electronic commerce - EC ’08. doi:10.1145/1386790.1386829Brabham, D. C. (2010). MOVING THE CROWD AT THREADLESS. Information, Communication & Society, 13(8), 1122-1145. doi:10.1080/13691181003624090Giudice, K. D. (2010). Crowdsourcing credibility: The impact of audience feedback on Web page credibility. Proceedings of the American Society for Information Science and Technology, 47(1), 1-9. doi:10.1002/meet.14504701099Stewart, O., Huerta, J. M., & Sader, M. (2009). Designing crowdsourcing community for the enterprise. Proceedings of the ACM SIGKDD Workshop on Human Computation - HCOMP ’09. doi:10.1145/1600150.1600168Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370-396. doi:10.1037/h0054346Veal, A. J. (Ed.). (2002). Leisure and tourism policy and planning. doi:10.1079/9780851995465.0000Dahlander, L., & Gann, D. M. (2010). How open is innovation? Research Policy, 39(6), 699-709. doi:10.1016/j.respol.2010.01.01

    Temporal clustering of Kawasaki disease cases around the world

    Get PDF
    In a single-site study (San Diego, CA, USA), we previously showed that Kawasaki Disease (KD) cases cluster temporally in bursts of approximately 7 days. These clusters occurred more often than would be expected at random even after accounting for long-term trends and seasonality. This finding raised the question of whether other locations around the world experience similar temporal clusters of KD that might offer clues to disease etiology. Here we combine data from San Diego and nine additional sites around the world with hospitals that care for large numbers of KD patients, as well as two multi-hospital catchment regions. We found that across these sites, KD cases clustered at short time scales and there were anomalously long quiet periods with no cases. Both of these phenomena occurred more often than would be expected given local trends and seasonality. Additionally, we found unusually frequent temporal overlaps of KD clusters and quiet periods between pairs of sites. These findings suggest that regional and planetary range environmental influences create periods of higher or lower exposure to KD triggers that may offer clues to the etiology of KD

    Effect of nesiritide in patients with acute decompensated heart failure.

    Get PDF
    BACKGROUND: Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. METHODS: We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. RESULTS: Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P=0.03) and 24 hours (68.2% vs. 66.1%, P=0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.1 to 0.7; P=0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, -0.4 percentage points; 95% CI, -1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P=0.11). CONCLUSIONS: Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.

    Effect of nesiritide in patients with acute decompensated heart failure

    Get PDF
    Background Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. Methods We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. Results Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P = 0.03) and 24 hours (68.2% vs. 66.1%, P = 0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, −0.7 percentage points; 95% confidence interval [CI], −2.1 to 0.7; P = 0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, −0.4 percentage points; 95% CI, −1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P = 0.11). Conclusions Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.
    • …
    corecore