1,288 research outputs found

    Fluctuations from dissipation in a hot non-Abelian plasma

    Get PDF
    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that B\"odeker's effective theory is consistent with the fluctuation-dissipation theorem.Comment: 9 pages, revtex, no figures, identical to published versio

    Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

    Get PDF
    Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated, version as to appear in Phys. Rev. Let

    Duration and nature of the end-Cryogenian (Marinoan) glaciation

    Get PDF
    The end-Cryogenian glaciation (Marinoan) is portrayed commonly as the archetype of snowball Earth, yet its duration and character remain uncertain. Here we report U-Pb zircon ages for two ash beds from widely separated localities of the Marinoan-equivalent Ghaub Formation in Namibia: 639.29 ± 0.26 Ma and 635.21 ± 0.59 Ma. These findings verify, for the first time, the key prediction of the snowball Earth hypothesis for the Marinoan glaciation, i.e., longevity, with a duration of ≄4 m.y. They also show that the nonglacial interlude of Cryogenian time spanned 20 m.y. or less and that glacigenic erosion and sedimentation, and at least intermittent open-water conditions, occurred 4 m.y. prior to termination of the Marinoan glaciation

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    Spin-Selective Electron Transport Through Single Chiral Molecules

    Full text link
    The interplay between chirality and magnetism has been a source of fascination among scientists for over a century. In recent years, chirality-induced spin selectivity (CISS) has attracted renewed interest. It has been observed that electron transport through layers of homochiral molecules leads to a significant spin polarization of several tens of percent. Despite the abundant experimental evidence gathered through mesoscopic transport measurements, the exact mechanism behind CISS remains elusive. In this study, we report spin-selective electron transport through single helical aromatic hydrocarbons that were sublimed in vacuo onto ferromagnetic cobalt surfaces and examined with spin-polarized scanning tunneling microscopy (SP-STM) at a temperature of 5 K. Direct comparison of two enantiomers under otherwise identical conditions revealed magnetochiral conductance asymmetries of up to 50% when either the molecular handedness was exchanged or the magnetization direction of the STM tip or Co substrate was reversed. Importantly, our results rule out electron-phonon coupling and ensemble effects as primary mechanisms responsible for CISS.Comment: 15 pages, 4 figures, plus Supporting Informatio

    Atmospheric observation-based global SF6 emissions - comparison of top-down and bottom-up estimates

    Get PDF
    Emissions of sulphur hexafluoride (SF6), one of the strongest greenhouse gases on a per molecule basis, are targeted to be collectively reduced under the Kyoto Protocol. Because of its long atmospheric lifetime (≈3000 years), the accumulation of SF6 in the atmosphere is a direct measure of its global emissions. Examination of our extended data set of globally distributed high-precision SF6 observations shows an increase in SF6 abundance from near zero in the 1970s to a global mean of 6.7 ppt by the end of 2008. In-depth evaluation of our long-term data records shows that the global source of SF6 decreased after 1995, most likely due to SF6 emission reductions in industrialised countries, but increased again after 1998. By subtracting those emissions reported by Annex I countries to the United Nations Framework Convention of Climatic Change (UNFCCC) from our observation-inferred SF6 source leaves a surprisingly large gap of more than 70–80% of non-reported SF6 emissions in the last decade

    Enantioselective adsorption on magnetic surfaces

    Full text link
    From the beginning of molecular theory, the interplay of chirality and magnetism has intrigued scientists. There is still the question if enantiospecific adsorption of chiral molecules occurs on magnetic surfaces. Enantiomer discrimination was conjectured to arise from chirality-induced spin separation within the molecules and exchange interaction with the substrate's magnetization. Here we show that single helical aromatic hydrocarbons undergo enantioselective adsorption on ferromagnetic cobalt surfaces. Spin and chirality sensitive scanning tunneling microscopy reveals that molecules of opposite handedness prefer adsorption onto cobalt islands with opposite out-of-plane magnetization. As mobility ceases in the final chemisorbed state, it is concluded that enantioselection must occur in a physisorbed transient precursor state. State-of-the-art spin-resolved ab initio simulations support this scenario by refuting enantio-dependent chemisorption energies. These findings demonstrate that van der Waals interaction should also include spin-fluctuations which are crucial for molecular magnetochiral processes

    Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish

    Get PDF
    Forces play diverse roles in vascular development, homeostasis and disease. VE-cadherin at endothelial cell-cell junctions links the contractile acto-myosin cytoskeletons of adjacent cells, serving as a tension-transducer. To explore tensile changes across VE-cadherin in live zebrafish, we tailored an optical biosensor approach, originally established in vitro. We validate localization and function of a VE-cadherin tension sensor (TS) in vivo. Changes in tension across VE-cadherin observed using ratio-metric or lifetime FRET measurements reflect acto-myosin contractility within endothelial cells. Furthermore, we apply the TS to reveal biologically relevant changes in VE-cadherin tension that occur as the dorsal aorta matures and upon genetic and chemical perturbations during embryonic development

    Manufacturing, high heat flux testing and post mortem analyses of a W-PIM mock-up

    Get PDF
    In the framework of the European material development programme for fusion power plants beyond the international thermonuclear experimental reactor (ITER), tungsten (W) is an attractive candidate as plasma facing material for future fusion reactors. The selection of tungsten is owing to its physical properties such as the high melting point of 3420 °C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate. Disadvantages are the low ductility and fracture toughness at room temperature, low oxidation resistance, and the manufacturing by mechanical machining such as milling and turning, because it is extremely cost and time intensive. Powder Injection Molding (PIM) as near-net-shape technology allows the mass production of complex parts, the direct joining of different materials and the development and manufacturing of composite and prototype materials presenting an interesting alternative process route to conventional manufacturing technologies. With its high precision, the PIM process offers the advantage of reduced costs compared to conventional machining. Isotropic materials, good thermal shock resistance, and high shape complexity are typical properties of PIM tungsten. This contribution describes the fabrication of tungsten monoblocks, in particular for applications in divertor components, via PIM. The assembly to a component (mock-up) was done by Hot Radial Pressing (HRP). Furthermore, this component was characterized by High Heat Flux (HHF) tests at GLADIS and at JUDITH 2, and achieved 1300 cycles @ 20 MW/mÂČ. Post mortem analyses were performed quantifying and qualifying the occurring damage by metallographic and microscopical means. The crystallographic texture was analysed by EBSD measurements. No change in microstructure during testing was observed
    • 

    corecore