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Fluctuations from dissipation in a hot non-Abelian plasma
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Abstract

We consider a transport equation of the Boltzmann-Langevin type for non-Abelian
plasmas close to equilibrium to derive the spectral functions of the underlying mi-
croscopic fluctuations from the entropy. The correlator of the stochastic source is
obtained from the dissipative processes in the plasma. This approach, based on
classical transport theory, exploits the well-known link between a linearized collision
integral, the entropy and the spectral functions. Applied to the ultra-soft modes of
a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions
agree with earlier findings obtained from the microscopic theory. As a by-product, it
follows that Bödeker’s effective theory is consistent with the fluctuation-dissipation
theorem.
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It has been recognized that dynamical properties of (non-perturbative) quasi-particle
excitations in non-Abelian plasmas can be described very efficiently by means of effective
transport equations. A prominent recent example is given by Bödeker’s effective classical
theory for the ultra-soft modes in a hot non-Abelian plasma close to equilibrium [1], which
corresponds to a transport equation of the Boltzmann-Langevin type. In [2], a general
procedure has been presented, based on classical coloured point particles, to obtain effective
transport equations from the microscopic theory after integrating-out the fluctuations about
the mean values, and taking the Gibbs ensemble average in phase space. On the one-loop
level, the same mean field equations of [2] have been obtained recently within a many-particle
world line formalism [3] (see also [4]). The collision integral and the source of stochastic
noise of [1] have been obtained from [2] to leading order in a weak coupling expansion, and
at logarithmic accuracy. It was also realized that the dynamical equations are the same for
the classical and the quantum plasma, changing only in the value of the Debye mass [2].
Other approaches to obtain the collision term of [1] have been reported as well [5–7].

In the present Letter we consider, based on classical transport theory, a generic
Boltzmann-Langevin equation for the one-particle distribution function f(x, p, Q), given
as

pµ

(
∂

∂xµ
− gfabcAb

µQc ∂

∂Qa
− gQaF

a
µν

∂

∂pν

)
f(x, p, Q) = C[f ](x, p, Q) + ζ(x, p, Q) . (1)

Here, the variables Q describe the non-Abelian colour charges. The transport equation
contains an effective collision term C[f ] and an associated source for stochastic noise. The
SU(N) gauge fields appearing in the above equation are self-consistent, that is, generated
by the same particles of the plasma. The Yang-Mills equation are

(DµF µν)a = Jµ
a (x) = g

∑
helicities
species

∫
dP dQ Qa pµ f(x, p, Q) , (2)

where the momemtum measure reads dP = d4p2Θ(p0)δ(p
2 −m2), and the colour measure

dQ was defined in [2]. We work in natural units c = h̄ = kB = 1, unless otherwise specified.
From now on we will omit the sum over different species of particles and helicities. In the
collisionless limit C = ζ = 0, the above set of transport equation reduces to those introduced
by Heinz [8]. In the general case however, the r.h.s. of (1) does not vanish due to effective
interactions (collisions) in the plasma, resulting in the term C[f ]. In writing (1), we have
already made the assumption that the one-particle distribution function f is a fluctuating
quantity. This is quite natural having in mind that f describes a ’coarse-grained’ microscopic
distribution function for coloured point particles, and justifies the presence of the stochastic
source ζ in the transport equation. For non-charged particles, a similar kinetic equation
has already been considered in [9] (see also [10], where stochastic noise is introduced to a
Schwinger-Dyson approach).

Given the stochastic dynamical equation (1), the question raises as to what can be said
on general grounds about the spectral functions of f and ζ . Here, we shall assume that
the dissipative processes are known close to equilibrium, but no further information is given
regarding the underlying fluctuations. This way of proceeding is complementary to [2], where
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the r.h.s. of (1) has been obtained from correlators of the microscopic statistical fluctuations.
We then show that the spectral function of the fluctuations and the noise correlator close to
equilibrium can be obtained from the knowledge of the entropy of the plasma, and from the
dissipative term in the effective transport equation. This gives a well-defined prescription
as to how the correct source for noise can be identified without the detailed knowledge
of the underlying microscopic dynamics responsible for the dissipation. The basic idea
behind this approach relies on the essence of the fluctuation-dissipation theorem (FDT).
While this theorem is more general, here we will only discuss the close to equilibrium
situations. According to the FDT if a fluctuating system remains close to equilibrium, then
the dissipative process occurring in it are known. Vice versa, if one knows the dissipative
process in the system, one can describe the fluctuations without an explicit knowledge of
the microscopic structure or processes in the system. The cornerstone of our approach is
the entropy of the fluctuating system, which serves to identify the thermodynamical forces,
and leads to the spectral function for the deviations from the non-interacting equilibrium.

Before entering into the discussion of plasmas, we will illustrate this way of proceeding by
reviewing the simplest setting of classical linear dissipative systems [11]. A generalization to
the more complex case of non-Abelian plasmas will then become a natural step to perform.
We consider a classical homogeneous system described by a set of variables xi, where i is
a discrete index running from 1 to n. These variables are normalized in such a way that
their mean values at equilibrium vanish. The entropy of the system is a function of the
quantities xi, S(xi). If the system is at equilibrium, the entropy reaches its maximum, and
thus (∂S/∂xi)eq = 0, ∀i. If the system is taken slightly away from equilibrium, then one can
expand the difference ∆S = S − Seq, where Seq is the entropy at equilibrium, in powers of
xi. If we expand up to quadratic order, then

∆S =
1

2

(
∂2S

∂xi∂xj

)
eq

xixj ≡ −1

2
βijx

ixj . (3)

The matrix βij is symmetric and positive-definite, since the entropy reaches a maximum at
equilibrium. The thermodynamic forces Fi are defined as the gradients of ∆S

Fi = −∂∆S

∂xi

. (4)

For a system close to equilibrium the thermodynamic forces are linear functions of xi,
Fi = βijx

j . If the system is at equilibrium, the thermodynamic forces vanish. In more
general situations the variables xi will evolve in time. The time evolution of these variables
is given as functions of the thermodynamical forces. In a close to equilibrium case one can
expect that the evolution is linear in the forces

dxi

dt
= −γijFj + ζ i , (5)

which, in turn, can be expressed as

dxi

dt
= −λijxj + ζ i , (6)
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The first term in the r.h.s. of the above equation describes the mean regression of the system
towards equilibrium, while the second term is the source for stochastic noise. The quantities
γij are known as the kinetic coefficients, and it is not difficult to check that γij = λikβ

−1
kj .

From the value of the coefficients βij one can deduce the equal time correlator

〈xi(t)xj(t)〉 = β−1
ij , (7)

which is used to obtain Einstein’s law〈
xi(t)Fj(t)

〉
= δi

j . (8)

After taking the time derivative of (8), assuming that the noise is white and Gaussian〈
ζ i(t)ζ j(t′)

〉
= νijδ(t− t′) , (9)

we find that the strength of the noise self-correlator ν is determined by the dissipative
process

νij = γij + γji , (10)

which is the FDT relation we have been aiming at.
We now come back to the case of a non-Abelian plasma and generalize the above dis-

cussion to the case of our concern. We will consider the non-Abelian plasma as a linear
dissipative system, assuming that we know the collision term in the transport equation.
In order to adopt the previous reasoning, we have to identify the dissipative term in the
transport equation, and to express it as a function of the thermodynamical force obtained
from the entropy. The deviation from the equilibrium distribution is given here by

∆f(x, p, Q) = f(x, p, Q)− feq(p0) , (11)

and replaces the variables xi discussed above. The deviation ∆f goes as O(g) to leading
order in a small gauge coupling expansion. The entropy flux density for classical plasmas is
given as

Sµ(x) = −
∫

dPdQ pµ f(x, p, Q)
(
ln (f(x, p, Q)h3)− 1

)
, (12)

where h is an arbitrary constant such that f(x, p, Q)h3 is dimensionless. The µ = 0 compo-
nent of (12) gives the entropy density of the system. The entropy itself is then obtained as
S =

∫
d3x S0(x).

We shall now assume that the deviation from the equilibrium distribution is small,
∆f � feq, which can always be arranged for at small gauge coupling g � 1. We then
obtain ∆S just by expanding the expression of the entropy density in powers of ∆f up to
quadratic order. It is important to take into account that we will consider situations where
the small deviations from equilibrium are such that both the particle number and the energy
flux remain constant, thus∫

dPdQ Φ(p) ∆f(x, p, Q) = 0 , for Φ(p) = p0, p0pµ . (13)
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Under those assumptions, one reaches to

∆S0(x) = −
∫

dPdQ p0
(∆f(x, p, Q))2

feq(p0)

= −
∫

d3p dQ
(∆f(x,p, Q))2

feq(ωp)
, (14)

where in the last equality we have taken into account the mass-shell condition, with p0 =
ωp =

√
p2 + m2. Without loss of generality, we will consider from now on the case of

massless particles, so ωp = p = |p|.
The thermodynamic force associated to ∆f is defined from the entropy as

F (x,p, Q) = − δ∆S

δ∆f(x,p, Q)
= 2

∆f(x,p, Q)

feq(p)
(15)

We now linearize the transport equation (1) and express the collision integral close to equilib-
rium in terms of the thermodynamical force. Dividing (1) by p0 and imposing the mass-shell
constraint, we find

vµDµ∆f − gvµQaF
a
µ0

dfeq

dp
= C[∆f ](x,p, Q) + ζ(x,p, Q) , (16)

where vµ = pµ/p0 = (1,v), with v2 = 1. We also introduced the shorthand Dµ∆f ≡
(∂µ− gfabcAµ,bQc∂

Q
a )∆f [2]. It is understood that the collision integral has been linearized,

and we write it as

C[∆f ](t,x,p, Q) =
∫

d3x′d3p′ dQ′ K(x,p, Q;x′,p′, Q′)∆f(t,x′,p′, Q′) , (17)

with t ≡ x0. For simplicity, we take the collision integral local in time, but unrestricted
elsewise. According to the FDT, the source of stochastic noise has to obey

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −
(

δC[F ](x,p, Q)

δF (x′,p′, Q′)
+

δC[F ](x′,p′, Q′)
δF (x,p, Q)

)
(18)

in full analogy to (10). With the knowledge of the thermodynamical force (15) and the
linearized collision term (17) we arrive at

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −
(

1
2feq(p)K(x,p, Q;x′,p′, Q′) + sym.

)
δ(t− t′) . (19)

Here, symmetrisation in (x,p, Q) ↔ (x′,p′, Q′) is understood.
Notice that we can derive the equal time correlator for the deviations from the equilib-

rium distribution simply from the knowledge of the entropy and the thermodynamical force,
exploiting Einstein’s law in full analogy to the corresponding relation (7). Using (15) we
find

〈∆f(x,p, Q)∆f(x′,p′, Q′)〉t=t′ = feq(p)δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′) . (20)
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If the fluctuations ∆f have vanishing mean value, then (20) reproduces the well-known result
that the correlator of fluctuations at equilibrium is given by the equilibrium distribution
function. In order to make contact with the results of [2], we go a step further and consider
the case where ∆f has a non-vanishing mean value to leading order in the gauge coupling.
Splitting ∆f = gf̄ (1) + δf into a deviation of the mean part 〈∆f〉 = gf̄ (1) and a fluctuating
part 〈δf〉 = 0 and using (20), we obtain the equal time correlator for the fluctuations δf as

〈δf(x,p, Q)δf(x′,p′, Q′)〉t=t′ = feq(p)δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′)

− g2f̄ (1)(x,p, Q)f̄ (1)(x′,p′, Q′)
∣∣∣
t=t′

. (21)

This result agrees with the correlator obtained in [2] from the Gibbs ensemble average as
defined in phase space in the limit where two-particle correlations are small and given by
products of one-particle correlators.

Up to now we have dealt with purely classical plasmas. On the same footing, we can
consider the soft and ultra-soft modes in a hot quantum plasma. These can be treated
classically as their occupation numbers are large. The sole effect from their quantum nature
reduces to the different statistics, Bose-Einstein or Fermi-Dirac as opposed to Maxwell-
Boltzmann. The corresponding quantum FDT reduces to an effective classical one [11,12].

Some few changes are necessary to study hot quantum plasmas. As in [2], we change
the normalisation of f by a factor of (2πh̄)3 to obtain the standard normalisation for the
(dimensionless) quantum distribution function. Thus, the momentum measure is also mod-
ified by the same factor, dP = d4p2Θ(p0)δ(p

2)/(2πh̄)3 for massless particles, and h̄ = 1. To
check the FDT relation in this case one needs to start with the correct expression for the
entropy for a quantum plasma. The entropy flux density, as a function of f(x, p, Q), is given
by

Sµ(x) = −
∫

dPdQ pµ

(
f ln f ∓ (1± f) ln (1± f)

)
, (22)

where the upper/lower sign applies for bosons/fermions. From the above expression of the
entropy one can compute ∆S, and proceed exactly as in the classical case, expanding the
entropy up to quadratic order in the deviations from equilibrium. Thus, we obtain the noise
correlator

〈ζ(x,p, Q)ζ(x′,p′, Q′)〉 = −(2π)3
(

1
2feq(p)(1± feq(p))K(x,p, Q;x′,p′, Q′) + sym.

)
δ(t− t′) .

(23)

Again, the spectral functions of the deviations from equilibrium are directly deduced from
the entropy. As a result, we find

〈∆f(x,p, Q)∆f(x′,p′, Q′)〉t=t′ = (2π)3feq(p)(1± feq(p))δ(3)(x− x′)δ(3)(p− p′)δ(Q−Q′) .

(24)

Expanding ∆f = gf̄ (1) + δf as above, we obtain the equal time correlator for δf , which
agrees with the findings of [2] in the case where two-particle distribution functions can be
expressed as products of one-particle distributions.
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With the knowledge of the above spectral functions for the fluctuations in a classical or
quantum plasma one can derive further spectral distributions for different physical quanti-
ties. In particular, we can find the correlations of the self-consistent gauge field fluctuations
once the basic correlators as given above are known. This is how those spectral functions
were deduced in [2].

As a particular example of the above, we consider the dynamical equations for the ultra-
soft modes with p � mD, where mD is the Debye mass in a non-Abelian plasma close
to equilibrium. The linearized collision integral has been obtained to leading logarithmic
accuracy by several different approaches [1,2,5–7]. They all employ an IR cut-off of the
order of gmD for the elsewise unscreened magnetic modes.

We will first concentrate on the classical plasma, for particles carrying two helicities.
It is most efficient to write the transport equation not in terms of the full one-particle
distribution function, but in terms of the current density

J ρ
a (x,v) = 8π g vρ

∫
dp dQ p2 Qa ∆f(x,p, Q) . (25)

(Notice that feq gives no contribution to the current.) The current of (2) follows after
integrating over the angles of v, Jµ

a (x) =
∫ dΩ

4π
J ρ

a (x,v) [2]. Expressed in terms of (25), the
linearized Boltzmann-Langevin equation (16) becomes

[vµDµ,J ρ](x,v) = −m2
DvρvµF

µ0(x) + vρC[J 0](x,v) + ζρ(x,v) . (26)

where mD is the Debye mass [2]

m2
D = −8πg2C2

∫
dp p2 dfeq

dp
(27)

and the constant C2 depends on the representation of the coloured particles∫
dQ QaQb = C2δab . (28)

The linearized collision integral is related to (17) by

C[J 0
a ](x,v) = 8π g

∫
d3x′ dΩv′ dp dp′ dQ dQ′ p2p′2 Qa K(x,p, Q;x′,p′, Q′) ∆f(t,x′,p′, Q′)

(29)

and has been obtained explicitly [1,2,5–7] as

C[J 0
a ](x,v) = −γ

∫
dΩv′

4π
I(v,v′)J 0

a (x,v′) (30)

where the kernel reads

I(v,v′) = δ(2)(v − v′)− 4

π

(v · v′)2√
1− (v · v′)2

(31)
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and γ = g2NT ln (1/g)/4π. Comparing (29) with (30) we learn that only the part of the
kernel K which is symmetric under (x,p, Q) ↔ (x′,p′, Q′) contributes in the present case.
This part can be expressed as

K(x,p, Q;x′,p′, Q′) = −γ
I(v,v′)

4πp2
δ(p− p′)δ(Q−Q′)δ(3)(x− x′) . (32)

According to our findings above, the self-correlator of the stochastic source for the classical
plasma obeys

〈ζµ
a (x, v) ζν

b (y, v′)〉 = 22(4π)2 g2
∫

dp dp′ dQ dQ′ p2p′2 QaQ
′
b vµv′ν 〈ζ(x,p, Q) ζ(y,p′, Q′)〉

= 2 γ T m2
D vµv′ν I(v,v′) δab δ(4)(x− y) . (33)

The factor of 22 accounts for the helicities of the particles. In order to obtain (33), we
have made use of (19), (27) to (30), and of the relation feq = −T dfeq/dp for the Maxwell-
Boltzmann distribution.

The quantum plasma can be treated in exactly the same way. To confirm (33), we only
need to take into account the change of normalization as commented above, and the relation
feq(1± feq) = −T dfeq/dp for the Bose-Einstein and Fermi-Dirac distributions, respectively.

We thus found that the correlator (33) is in full agreement with the result of [1,2] for
both the classical or the quantum plasma. While this correlator has been obtained in
[1,2] from the corresponding microscopic theory, here, it follows solely from the FDT. This
way, it is established that the effective Boltzmann-Langevin equation found in [1] is indeed
fully consistent with the fluctuation-dissipation theorem. More generally, the important
observation is that the spectral functions as derived here from the entropy and the FDT do
agree with those obtained in [2] from a microscopic phase space average. This guarantees
that the formalism of [2] is consistent with the FDT.

In the above discussion we have considered the stochastic noise as Gaussian and Marko-
vian. These characteristics can be understood from the formalism in [2] as a consequence
of the small coupling expansion to leading logarithmic accuracy. More precisely, the noise
follows to be Gaussian due to the second moment approximation, valid for small couplings,
which allows to neglect higher order correlators beyond quadratic ones. The Markovian
character of the noise follows because the ultra-soft modes are well separated from the soft
ones, and suppressed in the collision integral at leading logarithmic order. This way, the
collision term and the correlator of stochastic noise are both local in x-space. Going beyond
the leading logarithmic approximation, we expect from the explicit computation in [2] that
the coupling of the soft and the ultra-soft modes makes the collision term non-local in co-
ordinate space. This non-trivial memory kernel should also result in a non-Markovian, but
still Gaussian, source for stochastic noise.

The present line of reasoning can in principle be extended to other approaches. Using
the phenomenological derivation of (30) from [5], the same arguments as above justify the
presence of a noise source with (33) in the corresponding Boltzmann equation [5–7]. It
might also be fruitful to follow a similar line based on the entropy within a quantum field
theoretical language. An interesting proposal to include self-consistently the noise within a
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Schwinger-Dyson approach has been made recently in [10]. Along these lines, it might be
feasible to derive the source for stochastic noise directly from the quantum field theory [6].

While we have concentrated the discussion on plasmas close to equilibrium, it is known
that a fluctuation-dissipation theorem can be formulated as well for (stationary and stable)
systems out-of-equilibrium [12]. It can also be extended to take non-linear effects into
account [13]. Both the out of equilibrium situations and non-linear effects can be treated,
in principle, with the general formalism presented in [2].

C.M. thanks the Institute for Nuclear Theory at the University of Washington for its
hospitality and the Department of Energy for partial support during the completion of this
work.
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