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the sequel, not be given explicitly.) Physical constraints
are enforced through the phase space volume element
dP � d4p 2�(p0)Æ(p

2 �m2)=(2�)3, while dQ contains Æ-
functions imposing the group Casimirs (see [5] for their
de�nition). The covariant conservation of the current
(2c) is shown using (2a) [5].
If the system under study contains a large number of

particles it is impossible to follow their individual trajec-
tories in phase space. Thus, f can no longer be consid-
ered a deterministic quantity and one has to switch to a
statistical description, taking statistical averages h: : :i of
all microscopic quantities. We write

Aa
� = �Aa

� + aa� ; f = �f + Æf ; J�a = �J�a + ÆJ�a ; (3)

where the quantities with a bar denote the mean values,
e.g. �f = hfi and �A = hAi, while the mean values of
uctuations vanish, hÆfi = 0 and hai = 0. We also split

F a
�� =

�F a
�� + fa�� ; (4a)

fa�� = ( �D�a� � �D�a�)
a + gfabcab�a

c
� ; (4b)

with �D � D[ �A] and �F � F [ �A]. Note, that the mean
�eld strength hF a

��i =
�F a
��+gfabchab�a

c
�i due to the non-

Abelian nature of the theory.
Let us take a statistical average of (2) to �nd the ki-

netic equations for the mean values,

p�
�
�D� � gQa

�F a
��@

�
p

�
�f = h�i+ h�i ; (5a)

�D�
�F�� + hJ�

fluc
i = �J� : (5b)

In (5a) we used [@�� gfabcQcA
b
�@

Q
a ]f � D�f . The func-

tions �; � and Jfluc are of second and higher order in the
uctuations and read

� � gQa p
�@�pf

a
�� Æf ; (6a)

� � gp�fabcQc
�
@Qa a

b
� Æf + gaa�a

b
�@

�
p
�f
�
; (6b)

Ja;�
fluc

� gfdbc
�
�D�
adab;�a

�
c + Æadab;� f

��
c

�
: (6c)

The corresponding equations for the uctuations are ob-
tained by subtracting (5) from (2). The result is

p�
�
�D� � gQa

�F a
��@

�
p

�
Æf � gp�ab;�f

abcQc@
Q
a
�f

�gQa[ �D�a� � �D�a�]
ap�@p�

�f = � + � � h� + �i (7a)�
�D2a� � �D�( �D�a

�)
�a
+ 2gfabc �F ��

b ac;� +

+Ja;�
fluc

� hJa;�
fluc
i = ÆJa;� : (7b)

A number of comments are in order.

1. The equations (5) and (7) are exact, no approxima-
tions have been made. In particular, they are also
valid in out-of-equilibrium situations.

2. The equations (5) and (7) are consistent with gauge
invariance. They are covariant under the mean gauge
�eld symmetry Æ� �Aa

� = ( �D��)a and Æ�a
a
� = gfabcab��

c,
in analogy to the background �eld formalism[10]. This
establishes the compatibility of the statistical average
with the gauge transformations of the mean �eld. We
postpone a careful and detailed discussion to [7].

3. The microscopic current conservation implies

�
�D�

�J�
�
a
+ gfabc



ab� ÆJ

c;�
�
= 0 : (8)

This is automatically consistent with (5b), provided �J
and ÆJ are solutions of (5) and (7). (A similar equation
holds for the uctuation �elds.) Note that the validity
of (8) turns into a non-trivial consistency check for
approximate solutions.

4. The functions h�i and h�i can be considered as the
e�ective collision integrals of the Boltzmann equation
(5a). In our formalism the collision integrals arise as
correlators of statistical uctuations. The uctuations
of the gauge �elds cause random changes in the motion
of particles, and thus, they can be viewed as having the
same e�ects as collisions. This can be seen as a deriva-
tion of collision integrals from the microscopic theory.
Note also that the current induced by the uctuations
of the gauge �eld hJfluci is a purely non-Abelian e�ect.

5. A general procedure for integrating-out the uctua-
tions amounts to �rst solve their dynamics (7) in the
background of mean �elds. In general, this is a diÆcult
task, in particular due to the non-linear terms in (7).
The (explicit) solution is then inserted into (6). The
back-coupling of the uctuations to the mean �elds
is �nally obtained after taking the statistical average
of the functions (6), and yields the e�ective collision
integrals and the induced current in (5).

6. The set of equations (5) and (7) reproduces the known
set of kinetic equations for Abelian plasmas in the cor-
responding limit [8], in which only the collision in-
tegral h�i survives. The Abelian counterpart of h�i
can be expressed as the Balescu-Lenard collision in-
tegral [8]. One can then proof in a rigorous way the
correspondence between uctuations and collisions in
the Abelian plasmas mentioned above. (An analogous
derivation of collision integrals for Wigner functions
can be found in [11], see also [12].)

7. Neglecting all uctuations reduces (5) to the well-
known (non-Abelian) Vlasov equations.

This terminates the derivation and discussion of the
basic set of equations.

To put the method to work we will specialize our analy-
sis to hot non-Abelian plasmas close to equilibrium, with
the gauge coupling g� 1. This allows us to perform sev-
eral approximations. We will consider small uctuations,
neglecting in (6a) and (6c) the terms cubic in the uc-
tuations. This is interpreted as neglecting e�ective three
body collisions versus binary ones. In the same spirit,
we employ the second-moment approximation for the dy-
namics of the uctuations [8], setting � = h�i, � = h�i
and Jfluc = hJfluci in (7). This linearizes the dynamics of
the uctuations and can be interpreted as neglecting the
inuence of collisions on the dynamics of the uctuations.
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Finally, the term containing the mean �eld strength in
(7a) is negligible compared to the remaining terms and
will be omitted, as long as g j �F ��

a j=mD � T , with mD

the Debye mass [8].
We study the mean distribution function �f (x; p;Q) =

�feq:(p0) + g �f (1)(x; p;Q). In the strictly classical ap-
proach, the relativistic Maxwell distribution at equlib-
rium is used for any species of particles. Here, we
consider only massless particles in the adjoint, withR
dQQaQb = N Æab. For particles in the fundamental

one has
R
dQQaQb = 1

2
Æab instead. Solving (5) for van-

ishing uctuations in this approximationgives the in�nite
set of non-Abelian hard thermal loops [5,6].
We now include small statistical uctuations Æf around

�f and re-write the approximations to (5) and (7) in terms
of current densities and their uctuations. Consider the
current densities

J�a1���an(x; p) = g p�
Z
dQQa1 � � �Qanf(x; p;Q); (9a)

J �
a1���an

(x; v) =

Z
d ~PJ�a1���an (x; p) : (9b)

The measure d ~P only integrates over the radial compo-
nents, dP = d ~Pd
=4�, and v� = (1;v) with v2 = 1.
The current (2c) is obtained performing the remaining
angle integration J(x) =

R
d


4�
J (x; v). From now on we

will omit the arguments of the current density J , unless
necessary to avoid confusion.
After multiplying (5a) by gQap

�=p0, summing over the

two helicities, and integrating over d ~PdQ, we obtain for
the mean current density at leading order in g

v� �D�
�J � +m2

Dv
�v� �F�0 = h��i + h��i ; (10a)

�D�
�F�� + hJ�

fluc
i = �J� ; (10b)

with the Debye mass m2
D = �2g2N

R
d ~Pp0 d �f

eq(p0)=dp0,
and

��a = �g

Z
d ~P

p0

n
( �D�a

� � �D�a�)
b ÆJ�ab(x; p)

�
p�

p0
( �D�a0 � �D0a�)

b ÆJ�ab(x; p)
o
; (11a)

��a = �gfabcv
� ab� ÆJ c;� ; (11b)

J�;a
fluc

= gfdbc
�
�Dad
� a�

b a
�
c + Æadab�

�
�D�a� � �D�a�

�c	
: (11c)

For the uctuations we �nd
�
v� �D� ÆJ

�
�
a
= �m2

Dv
�v�

�
�D�a0 � �D0a�

�a
�gfabcv

�ab� �J c;� ; (12a)�
v� �D�ÆJ

�
�
ab
= gv�am� (fmac Æbd + fmbdÆac) �J �

cd; (12b)�
�D2a� � �D�( �Da)

�
a
+ 2gfabc �F

��

b ac;� = ÆJ�a : (12c)

We solve the equations for the uctuations (12) with
an initial boundary condition for Æf , and a�(t = 0) = 0.
Exact solutions to (12a) and (12b) can be obtained [7].
The current uctuation ÆJa reads, for x0 � t � 0,

ÆJ �
a (x; v) = �Uab(x; xt) ÆJ

�
b (xt; v)

�

Z 1

0

d� �Uab(x; x� )
n
gfbdcv

�ad�(x� )
�J �
c (x� ; v)

+ m2
Dv

�v�
�
�D�a0 � �D0a�

�b
(x� )

o
: (13)

We introduced x� � x� v� and the parallel transporter
�Uab, obeying v� �Dx

�
�Uab(x; y)jy=x� = 0. In order to solve

(12c) for a�, we make a double expansion in both �A and
�J , using �Uab = Æab + O(g �A). We denote by a(n) the
term containing a total of n powers in the mean �elds �A
and/or �J .
For our purposes, it will be suÆcient to consider the

zeroth order term in �A, and the zeroth and �rst order
terms in �J . Using the one-sided Fourier transform [8],
we �nd

a
T (0)
i;a+(k) =

1

�k2 + �T

Z
d
v
4�

ÆJ T
i;a(t = 0;k; v)

�i k � v
; (14a)

a
T (1)
i;a+(k) =

�gfabc
�k2 + �T

PT
ij (k)

Z
d
v
4�

1

�i k � v
�

Z
d4q

(2�)4
v�ab(0)� (q) �J c

j (k � q; v) (14b)

in the gauge k � a = 0. The function �T (k) is the
transverse polarization tensor of the plasma, PT

ij (k) =

Æij � kikj=k
2 the transverse projector, and aTi � P T

ijaj.
Retarded boundary conditions are assumed above, with
the prescription k0 ! k0 + i0+.
With the above, we can express all uctuations in

terms of initial conditions and the mean �elds. Follow-
ing [8] the statistical average over initial conditions can
be deduced [7] and �nally expressed (for each species or
helicity index) as

hÆfkpQ Æfk0p0Q0i = (2�)6 Æ(3)(k + k0)�h
Æ(3)(p� p0)Æ(Q �Q0) �f (p) + �kpp0QQ0

i
: (15)

The function Æ(Q � Q0) is, apart from a (representation
dependent) normalization constant, a N2 � N dimen-
sional Æ-function over the proper set of Darboux variables
related to the color charges [5]. The second term in (15)
is the Fourier transform of a smooth function that van-
ishes at large distances. The above statistical average is
all we need to evaluate the collision integrals.
For the remaining part we will concentrate on the dy-

namics of mean �elds with typical momenta around gmD.
When computing the related collision integrals, we will
�nd logarithmic divergences, cut-o� in the infrared by the
inverse collision time. We employ the leading logarithmic
approximation, assuming ln(1=g) � 1 while neglecting
all sub-leading (though �nite) terms.

We �nd that the induced current hJ (0)fluci vanishes, as do
the uctuation integrals h�(0)i and h�(0)i. The vanishing
of h�(0)i is consistent with the fact that in the Abelian
limit the counterpart of h�i vanishes at equilibrium [8].
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In the same spirit we evaluate the collision integrals con-
taining one �J �eld. Consider

D
�(1)�;a

E
= gfabcv

�
n
�
D
a
(1)
�;b(x) ÆJ

(0)
�;c (x; v)

E

+gfcdev
�

Z
1

0

d� �J�;e(x� ; v)
D
a
(0)
�;b(x) a

(0)
�;d(x� )

Eo
; (16)

which simpli�es, at logarithmic accuracy, to

D
�(1)�;a(x; v)

E
= �

g2

4�
NT ln (1=g)�

v�

Z
d
v0

4�
I(v; v0) �J 0

a (x; v
0); (17)

I(v; v0) � Æ(2)(v � v0)�
4

�

(v � v0)2p
1� (v � v0)2

: (18)

The above expression has been obtained �rst in [3], and
reproduces the collision integral considered in the Boltz-
mann equation of [13].
We veri�ed that the leading logarithmic solution is con-

sistent with gauge invariance. Evaluating the correlator
in (8) yields �D�

�J� = 0, in accordance with (10b) in the
present approximation.
Following B�odeker, one can now estimate �J i from (10a)

to obtain for (10b)

( �D�
�F�i)a = � �Ei

a + �ia ; � =
4�m2

D

3Ng2T ln (1=g)
: (19)

This is the result of [3]. The coeÆcient � represents the
color conductivity and has been discussed in [13,14]. The
white noise � has its origin in the uctuations of the
transverse part of �(0) [3,7]. We obtain to leading order

D
�ia(x) �

j

b (y)
E
= 2T � ÆijÆab Æ

(4)(x� y) ; (20)

in accordance with the uctuation-dissipation theorem
(FDT). Note also that the classical Debye mass di�ers
from the quantum one.
In order to go beyond classical transport theory we ex-

pand about the bosonic (fermionic) quantum-statistical
equilibrium distribution function �f+ ( �f�). For gluons in
the adjoint, the Debye mass obtains as m2

D = g2NT 2=3.
The FDT is obeyed as well, if �f in (15) is replaced by
�f�(1 � �f�). (This should however be derived in a sim-
ilar way as (15) from the microscopic theory [7].) Also,
the quantum collision integrals are obtained with the cor-
rect statistical factors [7]. It is interesting to note that
all quantum modi�cations are contained in the implicit
change of mD .
This terminates the explicit derivation, in the leading

logarithmic approximation, of the collision integral and
the dynamical equations for the soft �elds from classical
transport theory.
Summarizing, we have given a prescription to derive

mean gauge �eld equations from classical transport the-
ory. This includes a recipe to obtain e�ective (classical or

quantum) collision integrals from the microscopic theory.
The approach is in accordance with gauge invariance. In
a close-to-equilibrium plasma and for small gauge cou-
pling, we reproduce B�odeker's e�ective theory.
The last part of our analysis can straightforwardly be

generalized in order to obtain explicit expressions for the
collision integrals not only for the soft momentum re-
gion. Another interesting open problem is using the same
methods for out-of-equilibrium situations. Based on the
evaluation of collision integrals for Abelian plasmas out
of equilibrium [8], we should �nd the Coulomb logarithm
changing drastically the mean non-Abelian gauge �eld
equations.
It remains remarkable that classical transport theory is

eÆcient enough as to describe not only the non-Abelian
dynamics of semi-hard modes with momenta aroundmD,
but as well the non-perturbative dynamics of soft glu-
ons at leading logarithmic order. This establishes a link
even beyond the one-loop level between our approach and
a complete quantum �eld theoretical treatment, whose
deeper structure is waiting for being uncovered [15].
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