27 research outputs found

    Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1

    Get PDF
    On the basis of frequentist analyses of experimental constraints from electroweak precision data, g-2, B physics and cosmological data, we investigate the parameters of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking mass parameters, and a model with common non-universal Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu and the spin-independent dark matter scattering cross section. In the CMSSM we find preferences for sparticle masses that are relatively light. In the NUHM1 the best-fit values for many sparticle masses are even slightly smaller, but with greater uncertainties. The likelihood functions for most sparticle masses are cut off sharply at small masses, in particular by the LEP Higgs mass constraint. Both in the CMSSM and the NUHM1, the coannihilation region is favoured over the focus-point region at about the 3-sigma level, largely but not exclusively because of g-2. Many sparticle masses are highly correlated in both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are accessible to early LHC running. Some slepton and chargino/neutralino masses should be in reach at the ILC. The masses of the heavier Higgs bosons should be accessible at the LHC and the ILC in portions of the preferred regions in the (M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is peaked close to the Standard Model value, but much larger values are possible in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are preferred in both the CMSSM and the NUHM1. We study the effects of dropping the g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure

    Upper and Lower Limits on Neutralino WIMP Mass and Spin--Independent Scattering Cross Section, and Impact of New (g-2)_{mu} Measurement

    Get PDF
    We derive the allowed ranges of the spin--independent interaction cross section \sigsip for the elastic scattering of neutralinos on proton for wide ranges of parameters of the general Minimal Supersymmetric Standard Model. We investigate the effects of the lower limits on Higgs and superpartner masses from colliders, as well as the impact of constraints from \bsgamma and the new measurement of \gmtwo on the upper and lower limits on \sigsip. We further explore the impact of the neutralino relic density, including coannihilation, and of theoretical assumptions about the largest allowed values of the supersymmetric parameters. For μ>0\mu>0, requiring the latter to lie below 1\tev leads to \sigsip\gsim 10^{-11}\pb at \mchi\sim100\gev and \sigsip\gsim 10^{-8}\pb at \mchi\sim1\tev. When the supersymmetric parameters are allowed above 1\tev, for 440\gev \lsim \mchi\lsim 1020 \gev we derive a {\em parameter--independent lower limit} of \sigsip \gsim 2\times 10^{-12}\pb. (No similar lower limits can be set for μ<0\mu<0 nor for 1020\gev\lsim\mchi\lsim2.6\tev.) Requiring \abundchi<0.3 implies a {\em parameter--independent upper limit} \mchi\lsim2.6\tev. The new \epem--based measurement of (g2)μ(g-2)_{\mu} restricts \mchi\lsim 350\gev at 1σ1 \sigma CL and \mchi\lsim515\gev at 2σ2 \sigma CL, and implies μ>0\mu>0. The largest allowed values of \sigsip have already become accessible to recent experimental searches.Comment: LaTeX, 17 pages, 9 eps figures. Version to appear in JHE

    On the detectability of the CMSSM light Higgs boson at the Tevatron

    Get PDF
    We examine the prospects of detecting the light Higgs h^0 of the Constrained MSSM at the Tevatron. To this end we explore the CMSSM parameter space with \mu>0, using a Markov Chain Monte Carlo technique, and apply all relevant collider and cosmological constraints including their uncertainties, as well as those of the Standard Model parameters. Taking 50 GeV < m_{1/2}, m_0 < 4 TeV, |A_0| < 7 TeV and 2 < tan(beta) < 62 as flat priors and using the formalism of Bayesian statistics we find that the 68% posterior probability region for the h^0 mass lies between 115.4 GeV and 120.4 GeV. Otherwise, h^0 is very similar to the Standard Model Higgs boson. Nevertheless, we point out some enhancements in its couplings to bottom and tau pairs, ranging from a few per cent in most of the CMSSM parameter space, up to several per cent in the favored region of tan(beta)\sim 50 and the pseudoscalar Higgs mass of m_A\lsim 1 TeV. We also find that the other Higgs bosons are typically heavier, although not necessarily much heavier. For values of the h^0 mass within the 95% probability range as determined by our analysis, a 95% CL exclusion limit can be set with about 2/fb of integrated luminosity per experiment, or else with 4/fb (12/fb) a 3 sigma evidence (5 sigma discovery) will be guaranteed. We also emphasize that the alternative statistical measure of the mean quality-of-fit favors a somewhat lower Higgs mass range; this implies even more optimistic prospects for the CMSSM light Higgs search than the more conservative Bayesian approach. In conclusion, for the above CMSSM parameter ranges, especially m_0, either some evidence will be found at the Tevatron for the light Higgs boson or, at a high confidence level, the CMSSM will be ruled out.Comment: JHEP versio

    Revisiting the Higgs Mass and Dark Matter in the CMSSM

    Full text link
    Taking into account the available accelerator and astrophysical constraints, the mass of the lightest neutral Higgs boson h in the minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a possibility. Here we study the consequences for the parameters of the CMSSM and direct dark matter detection if the Higgs hint is confirmed, focusing on the strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the relic density of the lightest neutralino chi falls within the range of the cosmological cold dark matter density allowed by WMAP and other experiments. We find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured, together with its extension to a funnel where rapid annihilation via direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more options would be open. We give parametrizations of WMAP strips with large tan beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV, and present predictions for spin-independent elastic dark matter scattering along these strips. These are generally low for models compatible with m_h = 125 GeV, whereas the XENON100 experiment already excludes some portions of strips where m_h is smaller.Comment: 24 pages, 9 figure

    The cosmic ray positron excess and neutralino dark matter

    Get PDF
    Using a new instrument, the HEAT collaboration has confirmed the excess of cosmic ray positrons that they first detected in 1994. We explore the possibility that this excess is due to the annihilation of neutralino dark matter in the galactic halo. We confirm that neutralino annihilation can produce enough positrons to make up the measured excess only if there is an additional enhancement to the signal. We quantify the `boost factor' that is required in the signal for various models in the Minimal Supersymmetric Standard Model parameter space, and study the dependence on various parameters. We find models with a boost factor greater than 30. Such an enhancement in the signal could arise if we live in a clumpy halo. We discuss what part of supersymmetric parameter space is favored (in that it gives the largest positron signal), and the consequences for other direct and indirect searches of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD

    Complementarity of the CERN Large Hadron Collider and the e+ee^+e^- International Linear Collider

    Full text link
    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective e+ee^+e^- International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.Comment: 14 pages, 17 figures, to be published in "Supersymmetry on the Eve of the LHC", a special volume of European Physical Journal C, Particles and Fields (EPJC) in memory of Julius Wes

    Top Squarks and Bottom Squarks in the MSSM with Complex Parameters

    Full text link
    We present a phenomenological study of top squarks (~t_1,2) and bottom squarks (~b_1,2) in the Minimal Supersymmetric Standard Model (MSSM) with complex parameters A_t, A_b, \mu and M_1. In particular we focus on the CP phase dependence of the branching ratios of (~t_1,2) and (~b_1,2) decays. We give the formulae of the two-body decay widths and present numerical results. We find that the effect of the phases on the (~t_1,2) and (~b_1,2) decays can be quite significant in a large region of the MSSM parameter space. This could have important implications for (~t_1,2) and (~b_1,2) searches and the MSSM parameter determination in future collider experiments. We have also estimated the accuracy expected in the determination of the parameters of ~t_i and ~b_i by a global fit of the measured masses, decay branching ratios and production cross sections at e^+ e^- linear colliders with polarized beams. Analysing two scenarios, we find that the fundamental parameters apart from A_t and A_b can be determined with errors of 1% to 2%, assuming an integrated luminosity of 1 ab^-1 and a sufficiently large c.m.s. energy to produce also the heavier ~t_2 and ~b_2 states. The parameter A_t can be determined with an error of 2 - 3%, whereas the error on A_b is likely to be of the order of 50%.Comment: 31 pages, 8 figures, comments and references added, conclusions unchanged; version to appear in Phys. Rev.

    The Forward-Backward Asymmetry of B to (pi,K) l^+ l^-: Supersymmetry at Work

    Full text link
    We analyze the forward-backward asymmetry of the decays B to (pi,K) l^+ l^- with l = mu or tau in the framework of the constrained minimal supersymmetric standard model. We find that, the asymmetry is enhanced at large tan beta and depends strongly on the sign of the mu parameter. For mu > 0, the asymmetry is typically large and observable whereas for mu < 0, it changes the sign and is suppressed by an order of magnitude. Including cosmological constraints we find that the asymmetry has a maximal value of about 30 %, produced when Higgs- and gauge- induced flavor violations are of comparable size, at a value of tan beta simeq 35. The present constraints from the B-factories are too weak to constrain parameter space, and the regions excluded by them are already disfavoured by at least one of B to X_s gamma, g-2, and/or cosmology. The size of the asymmetry is mainly determined by the flavor of the final state lepton rather than the flavor of the pseudoscalar.Comment: 18 pages; 11 eps figures; minor changes in text; journal versio

    A Markov chain Monte Carlo analysis of the CMSSM

    Get PDF
    We perform a comprehensive exploration of the Constrained MSSM parameter space employing a Markov Chain Monte Carlo technique and a Bayesian analysis. We compute superpartner masses and other collider observables, as well as a cold dark matter abundance, and compare them with experimental data. We include uncertainties arising from theoretical approximations as well as from residual experimental errors of relevant Standard Model parameters. We delineate probability distributions of the CMSSM parameters, the collider and cosmological observables as well as a dark matter direct detection cross section. The 68% probability intervals of the CMSSM parameters are: 0.52 TeV &lt; m1/2 &lt; 1.26 TeV, m0 &lt; 2.10 TeV, -0.34 TeV &lt; A0 &lt; 2.41 TeV and 38.5 &lt; tan \u3b2 &lt; 54.6. Generally, large fractions of high probability ranges of the superpartner masses will be probed at the LHC. For example, we find that the probability of mg &lt; 2.7TeV is 78%, of mqR &lt; 2.5TeV is 85% and of m\u3c7\ub11 &lt; 0.8TeV is 65%. As regards the other observables, for example at 68% probability we find 3.5 710-9 &lt; BR(Bs \u2192 \u3bc+\u3bc-) &lt; 1.7 710-8, 1.9 710-10 &lt; \u3b4a SUSY \u3bc &lt; 9.9 710-10 and 1 7 10 -10 pb &lt; \u3c3SIp &lt; 1 7 10 -8 pb for direct WIMP detection. We highlight a complementarity between LHC and WIMP dark matter searches in exploring the CMSSM parameter space. We further expose a number of correlations among the observables, in particular between BR(Bs \u2192 \u3bc+\u3bc-) and BR(B \u2192 X s\u3b3) or \u3c3SIp. Once SUSY is discovered, this and other correlations may prove helpful in distinguishing the CMSSM from other supersymmetric models. We investigate the robustness of our results in terms of the assumed ranges of CMSSM parameters and the effect of the (g - 2)\u3bc anomaly which shows some tension with the other observables. We find that the results for m0, and the observables which strongly depend on it, are sensitive to our assumptions, while our conclusions for the other variables are robust

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200
    corecore