29 research outputs found

    Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism

    Get PDF
    The ligation of DNA double-strand breaks in the process of non-homologous end-joining (NHEJ) is accomplished by a heterodimeric enzyme complex consisting of DNA ligase IV and an associated non-catalytic factor. This DNA ligase also accounts for the fatal joining of unprotected telomere ends. Hence, its activity must be tightly controlled. Here, we describe interactions of the DNA ligase IV-associated proteins Lif1p and XRCC4 of yeast and human with the putatively orthologous G-patch proteins Ntr1p/Spp382p and NTR1/TFIP11 that have recently been implicated in mRNA splicing. These conserved interactions occupy the DNA ligase IV-binding sites of Lif1p and XRCC4, thus preventing the formation of an active enzyme complex. Consistently, an excess of Ntr1p in yeast reduces NHEJ efficiency in a plasmid ligation assay as well as in a chromosomal double-strand break repair (DSBR) assay. Both yeast and human NTR1 also interact with PinX1, another G-patch protein that has dual functions in the regulation of telomerase activity and telomere stability, and in RNA processing. Like PinX1, NTR1 localizes to telomeres and associates with nucleoli in yeast and human cells, suggesting a function in localized control of DSBR

    Macrophage Migration Inhibitory Factor Is Enhanced in Acute Coronary Syndromes and Is Associated with the Inflammatory Response

    Get PDF
    Chronic inflammation promotes atherosclerosis in cardiovascular disease and is a major prognostic factor for patients undergoing percutaneous coronary intervention (PCI). Macrophage migration inhibitory factor (MIF) is involved in the progress of atherosclerosis and plaque destabilization and plays a pivotal role in the development of acute coronary syndromes (ACS). Little is known to date about the clinical impact of MIF in patients with symptomatic coronary artery disease (CAD).In a pilot study, 286 patients with symptomatic CAD (n = 119 ACS, n = 167 stable CAD) undergoing PCI were consecutively evaluated. 25 healthy volunteers served as control. Expression of MIF was consecutively measured in patients at the time of PCI. Baseline levels of interleukin 6 (IL-6), “regulated upon activation, normal T-cell expressed, and secreted” (RANTES) and monocyte chemoattractant protein-1 (MCP-1) were measured by Bio-Plex Cytokine assay. C-reactive protein (CRP) was determined by Immunoassay. Patients with ACS showed higher plasma levels of MIF compared to patients with stable CAD and control subjects (median 2.85 ng/mL, interquartile range (IQR) 3.52 versus median 1.22 ng/mL, IQR 2.99, versus median 0.1, IQR 0.09, p<0.001). Increased MIF levels were associated with CRP and IL-6 levels and correlated with troponin I (TnI) release (spearman rank coefficient: 0.31, p<0.001). Patients with ACS due to plaque rupture showed significantly higher plasma levels of MIF than patients with flow limiting stenotic lesions (p = 0.002).To our knowledge this is the first study, demonstrating enhanced expression of MIF in ACS. It is associated with established inflammatory markers, correlates with the extent of cardiac necrosis marker release after PCI and is significantly increased in ACS patients with “culprit” lesions. Further attempts should be undertaken to characterize the role of MIF for risk assessment in the setting of ACS

    Genetic Analyses of Heme Oxygenase 1 (HMOX1) in Different Forms of Pancreatitis

    Get PDF
    Contains fulltext : 107993.pdf (publisher's version ) (Open Access)BACKGROUND: Heme oxygenase 1 (HMOX1) is the rate limiting enzyme in heme degradation and a key regulator of inflammatory processes. In animal models the course of pancreatitis was ameliorated by up-regulation of HMOX1 expression. Additionally, carbon monoxide released during heme breakdown inhibited proliferation of pancreatic stellate cells and might thereby prevent the development of chronic pancreatitis (CP). Transcription of HMOX1 in humans is influenced by a GT-repeat located in the promoter. As such, HMOX1 variants might be of importance in the pathogenesis of pancreatitis. METHODS: The GT-repeat and SNP rs2071746 were investigated with fluorescence labelled primers and by melting curve analysis in 285 patients with acute pancreatitis, 208 patients with alcoholic CP, 207 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and in 289 controls, respectively. GT-repeat analysis was extended to a total of 446 alcoholic CP patients. In addition, we performed DNA sequencing in 145 patients with alcoholic CP, 138 patients with idiopathic/hereditary CP, 147 patients with alcoholic liver cirrhosis, and 151 controls. Exon 3 screening was extended to additional patients and controls. RESULTS: S- and L-alleles of the GT-repeat, genotypes and alleles of SNP rs2071746 and non-synonymous variants detected by sequencing were found with similar frequencies in all groups. CONCLUSIONS: Although functional data implicate a potential influence of HMOX1 variants on the pathogenesis of pancreatitis, we did not find any association. As rare non-synonymous HMOX1 variants were found in patients and controls, it is rather unlikely that they will have functional consequences essential for pancreatitis development

    A Common Variant of PNPLA3 (p.I148M) Is Not Associated with Alcoholic Chronic Pancreatitis

    Get PDF
    Contains fulltext : 110441.pdf (publisher's version ) (Open Access)BACKGROUND: Chronic pancreatitis (CP) is an inflammatory disease that in some patients leads to exocrine and endocrine dysfunction. In industrialized countries the most common aetiology is chronic alcohol abuse. Descriptions of associated genetic alterations in alcoholic CP are rare. However, a common PNPLA3 variant (p.I148M) is associated with the development of alcoholic liver cirrhosis (ALC). Since, alcoholic CP and ALC share the same aetiology PNPLA3 variant (p.I148M) possibly influences the development of alcoholic CP. METHODS: Using melting curve analysis we genotyped the variant in 1510 patients with pancreatitis or liver disease (961 German and Dutch alcoholic CP patients, 414 German patients with idiopathic or hereditary CP, and 135 patients with ALC). In addition, we included in total 2781 healthy controls in the study. RESULTS: The previously published overrepresentation of GG-genotype was replicated in our cohort of ALC (p-value <0.0001, OR 2.3, 95% CI 1.6-3.3). Distributions of genotype and allele frequencies of the p.I148M variant were comparable in patients with alcoholic CP, idiopathic and hereditary CP and in healthy controls. CONCLUSIONS: The absence of an association of PNPLA3 p.I148M with alcoholic CP seems not to point to a common pathway in the development of alcoholic CP and alcoholic liver cirrhosis

    The Exstrophy-epispadias complex

    Get PDF
    Exstrophy-epispadias complex (EEC) represents a spectrum of genitourinary malformations ranging in severity from epispadias (E) to classical bladder exstrophy (CEB) and exstrophy of the cloaca (EC). Depending on severity, EEC may involve the urinary system, musculoskeletal system, pelvis, pelvic floor, abdominal wall, genitalia, and sometimes the spine and anus. Prevalence at birth for the whole spectrum is reported at 1/10,000, ranging from 1/30,000 for CEB to 1/200,000 for EC, with an overall greater proportion of affected males. EEC is characterized by a visible defect of the lower abdominal wall, either with an evaginated bladder plate (CEB), or with an open urethral plate in males or a cleft in females (E). In CE, two exstrophied hemibladders, as well as omphalocele, an imperforate anus and spinal defects, can be seen after birth. EEC results from mechanical disruption or enlargement of the cloacal membrane; the timing of the rupture determines the severity of the malformation. The underlying cause remains unknown: both genetic and environmental factors are likely to play a role in the etiology of EEC. Diagnosis at birth is made on the basis of the clinical presentation but EEC may be detected prenatally by ultrasound from repeated non-visualization of a normally filled fetal bladder. Counseling should be provided to parents but, due to a favorable outcome, termination of the pregnancy is no longer recommended. Management is primarily surgical, with the main aims of obtaining secure abdominal wall closure, achieving urinary continence with preservation of renal function, and, finally, adequate cosmetic and functional genital reconstruction. Several methods for bladder reconstruction with creation of an outlet resistance during the newborn period are favored worldwide. Removal of the bladder template with complete urinary diversion to a rectal reservoir can be an alternative. After reconstructive surgery of the bladder, continence rates of about 80% are expected during childhood. Additional surgery might be needed to optimize bladder storage and emptying function. In cases of final reconstruction failure, urinary diversion should be undertaken. In puberty, genital and reproductive function are important issues. Psychosocial and psychosexual outcome depend on long-term multidisciplinary care to facilitate an adequate quality of life

    Telomere clustering and anchoring in budding yeast

    No full text
    Organisation spatiale des 32 télomères de la levure "Saccharomyces cerevisiae" dans des foyers périnucléaires. J'ai posé la question: "Quel télomère se situe dans quel foyer?". Un télomère donné reste-t-il toujours dans le même foyer ou existe-t-il des télomères en dehors des foyers? l'objectif de ma thèse était de visualiser ces foyers des télomères et un télomère individuel dans des cellules vivantes pour répondre à ces questions. En outre j'ai pu montrer que l'interaction de la télomerase avec Yku influence le positionnement des télomères près de l'enveloppe nucléaire. Dans ce contexte j'ai également exploré la relation entre la localisation des télomères et des aspects majeurs de leur biologie, à savoir la protection de ceux-ci vis-à-vis des systèmes de réparation et la régulation de leur longueur

    Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination.

    No full text
    Telomeres form the ends of linear chromosomes and protect these ends from being recognized as DNA double-strand breaks. Telomeric sequences are maintained in most cells by telomerase, a reverse transcriptase that adds TG-rich repeats to chromosome ends. In budding yeast, telomeres are organized in clusters at the nuclear periphery by interactions that depend on components of silent chromatin and the telomerase-binding factor yeast Ku (yKu). In this study, we examined whether the subnuclear localization of telomeres affects end maintenance. A telomere anchoring pathway involving the catalytic yeast telomerase subunits Est2, Est1, and Tlc1 is shown to be necessary for the perinuclear anchoring activity of Yku80 during S phase. Additionally, we identify the conserved Sad1-UNC-84 (SUN) domain protein Mps3 as the principal membrane anchor for this pathway. Impaired interference with Mps3 anchoring through overexpression of the Mps3 N terminus in a tel1 deletion background led to a senescence phenotype and to deleterious levels of subtelomeric Y' recombination. This suggests that telomere binding to the nuclear envelope helps protect telomeric repeats from recombination. Our results provide an example of a specialized structure that requires proper spatiotemporal localization to fulfill its biological role, and identifies a novel pathway of telomere protection
    corecore