286 research outputs found

    Mitochondrial dysfunction increases pro-inflammatory cytokine production and impairs repair and corticosteroid responsiveness in lung epithelium

    Get PDF
    COPD is characterized by chronic lung inflammation and irreversible lung tissue damage. Inhaled noxious gases, including cigarette smoke, are the major risk factor for COPD. Inhaled smoke first encounters the epithelial lining of the lungs, causing oxidative stress and mitochondrial dysfunction. We investigated whether a mitochondrial defect may contribute to increased lung epithelial pro-inflammatory responses, impaired epithelial repair and reduced corticosteroid sensitivity as observed in COPD. We used wild-type alveolar epithelial cells A549 and mitochondrial DNA-depleted A549 cells (A549 Rho-0) and studied pro-inflammatory responses using (multiplex) ELISA as well as epithelial barrier function and repair (real-time impedance measurements), in the presence and absence of the inhaled corticosteroid budesonide. We observed that A549 Rho-0 cells secrete higher levels of pro-inflammatory cytokines than wild-type A549 cells and display impaired repair upon wounding. Budesonide strongly suppressed the production of neutrophil attractant CXCL8, and promoted epithelial integrity in A549 wild-type cells, while A549 Rho-0 cells displayed reduced corticosteroid sensitivity compared to wild-type cells. The reduced corticosteroid responsiveness may be mediated by glycolytic reprogramming, specifically glycolysis-associated PI3K signaling, as PI3K inhibitor LY294002 restored the sensitivity of CXCL8 secretion to corticosteroids in A549 Rho-0 cells. In conclusion, mitochondrial defects may lead to increased lung epithelial pro-inflammatory responses, reduced epithelial repair and reduced corticosteroid responsiveness in lung epithelium, thus potentially contributing to the pathogenesis of COPD

    Aberrant DNA methylation and expression of SPDEF and FOXA2 in airway epithelium of patients with COPD

    Get PDF
    Background: Goblet cell metaplasia, a common feature of chronic obstructive pulmonary disease (COPD), is associated with mucus hypersecretion which contributes to the morbidity and mortality among patients. Transcription factors SAM-pointed domain-containing Ets-like factor (SPDEF) and forkhead box protein A2 (FOXA2) regulate goblet cell differentiation. This study aimed to (1) investigate DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation and (2) compare this in airway epithelial cells from patients with COPD and controls during mucociliary differentiation. Methods: To assess DNA methylation and expression of SPDEF and FOXA2 during goblet cell differentiation, primary airway epithelial cells, isolated from trachea (non-COPD controls) and bronchial tissue (patients with COPD), were differentiated by culture at the air-liquid interface (ALI) in the presence of cytokine interleukin (IL)-13 to promote goblet cell differentiation. Results: We found that SPDEF expression was induced during goblet cell differentiation, while FOXA2 expression was decreased. Importantly, CpG number 8 in the SPDEF promoter was hypermethylated upon differentiation, whereas DNA methylation of FOXA2 promoter was not changed. In the absence of IL-13, COPD-derived ALI-cultured cells displayed higher SPDEF expression than control-derived ALI cultures, whereas no difference was found for FOXA2 expression. This was accompanied with hypomethylation of CpG number 6 in the SPDEF promoter and also hypomethylation of CpG numbers 10 and 11 in the FOXA2 promoter. Conclusions: These findings suggest that aberrant DNA methylation of SPDEF and FOXA2 is one of the factors underlying mucus hypersecretion in COPD, opening new avenues for epigenetic-based inhibition of mucus hypersecretion

    Budesonide and fluticasone propionate differentially affect the airway epithelial barrier

    Get PDF
    Background: COPD patients have a higher risk of pneumonia when treated with fluticasone propionate (FP) than with placebo, and a lower risk with budesonide (BUD). We hypothesized that BUD and FP differentially affect the mucosal barrier in response to viral infection and/or cigarette smoke. Methods: We assessed protective effects of equivalent concentrations of BUD and FP on cytokine production and barrier function (electrical resistance) in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) upon exposure to viral mimetic poly-(I:C) and/or cigarette smoke extract (CSE) or epidermal growth factor (EGF). Results: BUD and FP were equally effective in suppressing poly-(I:C)-and/or CSE-induced IL-8 secretion in 16HBE and PBECs. Poly-(I:C) substantially decreased electrical resistance in 16HBE cells and both BUD and FP fully counteracted this effect. However, FP hardly affected 16HBE barrier dysfunction induced by CSE with/without poly-(I:C), whereas BUD (16 nM) provided full protection, an effect likely mediated by affecting EGFR-downstream target GSK-3 beta. Similarly, BUD, but not FP, significantly improved CSE-induced barrier dysfunction in PBECs. Finally, BUD, but not FP, exerted a modest but significant protective effect against Streptococcus Pneumoniae-induced barrier dysfunction, and BUD, but not FP, prevented cellular adhesion and/or internalization of these bacteria induced by poly-(I:C) in 16HBE. Conclusions: Collectively, both BUD and FP efficiently control epithelial pro-inflammatory responses and barrier function upon mimicry of viral infection. Of potential clinical relevance, BUD more effectively counteracted CSE-induced barrier dysfunction, reinforcing the epithelial barrier and potentially limiting access of pathogens upon smoking in vivo

    miR449 Protects Airway Regeneration by Controlling AURKA/HDAC6-Mediated Ciliary Disassembly

    Get PDF
    Airway mucociliary regeneration and function are key players for airway defense and are impaired in chronic obstructive pulmonary disease (COPD). Using transcriptome analysis in COPD-derived bronchial biopsies, we observed a positive correlation between cilia-related genes and microRNA-449 (miR449). In vitro, miR449 was strongly increased during airway epithelial mucociliary differentiation. In vivo, miR449 was upregulated during recovery from chemical or infective insults. miR0449−/− mice (both alleles are deleted) showed impaired ciliated epithelial regeneration after naphthalene and Haemophilus influenzae exposure, accompanied by more intense inflammation and emphysematous manifestations of COPD. The latter occurred spontaneously in aged miR449−/− mice. We identified Aurora kinase A and its effector target HDAC6 as key mediators in miR449-regulated ciliary homeostasis and epithelial regeneration. Aurora kinase A is downregulated upon miR449 overexpression in vitro and upregulated in miR449−/− mouse lungs. Accordingly, imaging studies showed profoundly altered cilia length and morphology accompanied by reduced mucociliary clearance. Pharmacological inhibition of HDAC6 rescued cilia length and coverage in miR449−/− cells, consistent with its tubulin-deacetylating function. Altogether, our study establishes a link between miR449, ciliary dysfunction, and COPD pathogenesis

    Characterization of a lung epithelium specific E-cadherin knock-out model:Implications for obstructive lung pathology

    Get PDF
    The airway epithelium regulates responses to aeroallergens, acting as a physical and immunological barrier. In asthma, epithelial barrier function and the expression of adherens junction protein E-cadherin is compromised, but it is unknown whether this is cause or consequence of the disease. We hypothesized that airway epithelial loss of E-cadherin is a critical step in the development of manifestations of asthma. We generated a transgenic mouse model with conditional loss of E-cadherin in lung epithelial cells at birth and onwards. We observed normal lung development at the time of birth in mice lacking E-cadherin in the lung epithelium. However, E-cadherin deficiency led to progressive epithelial damage in mice growing into adulthood, as evidenced by airway epithelial denudation, decreased zonula occludens (ZO)-1 expression, loss of ciliated cells, and enlarged alveolar spaces. In addition, spontaneous goblet cell metaplasia with mucus production was observed. These epithelial changes were accompanied by elevated levels of the epithelial-derived chemokine CCL17, infiltration of eosinophils and dendritic cells, and mucus production. In conclusion, loss of E-cadherin induces features in the lung reminiscent of those observed in asthma, indicating that the disruption of E-cadherin-mediated cell-cell contacts may play a key role in the development of asthma manifestations

    Microenvironmental IL1 1 β promotes metastatic colonisation of breast cancer cells in the bone via activation of Wnt-dependent cancer stem cell activity

    Get PDF
    Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1β stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1β-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis

    IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?

    Get PDF
    BACKGROUND: The role of Th2 cells (producing interleukin (IL-)4, IL-5 and IL-13) in allergic asthma is well-defined. A distinct proinflammatory T cell lineage has recently been identified, called Th(17 )cells, producing IL-17A, a cytokine that induces CXCL8 (IL-8) and recruits neutrophils. Neutrophilic infiltration in the airways is prominent in severe asthma exacerbations and may contribute to airway gland hypersecretion, bronchial hyper-reactivity and airway wall remodelling in asthma. AIM: to study the production of IL-17 in asthmatic airways at the mRNA level, and to correlate this with IL-8 mRNA, neutrophilic inflammation and asthma severity. METHODS: We obtained airway cells by sputum induction from healthy individuals (n = 15) and from asthmatic patients (n = 39). Neutrophils were counted on cytospins and IL-17A and IL-8 mRNA expression was quantified by real-time RT-PCR (n = 11 controls and 33 asthmatics). RESULTS: Sputum IL-17A and IL-8 mRNA levels are significantly elevated in asthma patients compared to healthy controls. IL-17 mRNA levels are significantly correlated with CD3γ mRNA levels in asthmatic patients and mRNA levels of IL-17A and IL-8 correlated with each other and with sputum neutrophil counts. High sputum IL-8 and IL-17A mRNA levels were also found in moderate-to-severe (persistent) asthmatics on inhaled steroid treatment. CONCLUSION: The data suggest that Th(17 )cell infiltration in asthmatic airways links T cell activity with neutrophilic inflammation in asthma

    Conocimientos, actitudes y prácticas en VIH/SIDA en adolescentes de 14 a 19 años que acuden al Hospital Roatán Islas de la Bahía. Honduras. Marzo del 2005.

    Get PDF
    Estudio descriptivo de corte transversal. Se encontró que el perfil sociodemográfico representativo de los adolescentes de ambos sexos estudiados es de 18 a 19 años de edad de raza mestiza, con secundaria incompleta, evangélicos, que no trabajan, solteros del género femenino, que tienen vida sexual activa y que realizan diferentes prácticas sexuales sin protección. Estos tienen conocimientos sobre prevención y modo de transmisión del VIH/SIDA, y las actitudes en cuanto a realizar relaciones sexuales fueron indiferentes, ya que no estaban dispuestos a cambiar su comportamiento, sabiendo que enfrentan una pandemia mundial que atenta contra la vida y los lleva a la muerte. Las estadísticas a nivel nacional en Honduras realizadas por UNICEF, en jóvenes adolescentes de 15 a 23 años, en el año 2002 reporta, que estos ya han iniciado vida sexual activa en un 56% y un 23% haber padecido de secreciones anormales por los genitales lo que se considera que es uno de los riesgos asociados al VIH/SIDA. Donde la sexualidad produce en muchos jóvenes ansiedad y turbación; y esto les impide que los jóvenes utilicen condón, lo cual se requiere del conocimiento y cooperación de la pareja; es por eso que estos suelen de carecer de actitudes para hacerlo. Se recomiendan campañas masivas de educación basadas esencialmente en una estrategia de Abstinencia, Fidelidad, y Preservativo llamadas estrategias ABC en inglés
    corecore