123 research outputs found

    Processing and electromechanical properties of lanthanum-doped Pb(Zr,Ti)O3 extruded piezoelectric fibres

    Get PDF
    This article describes the processing and characterisation of lanthanum-doped lead zirconate titanate (PLZT)-based ferroelectric fibres for composite transducer applications. X-ray diffraction of the extruded and sintered fibres indicated some lead loss during sintering; however, the fibres exhibited low porosity (1.54%), high maximum piezoelectric strain (4041ppm) and relatively low coercive field (0.77kV/mm). The low coercive field of the lanthanum-doped fibres may be advantageous in terms of facilitating polarization of the fibres in composite architecture

    Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactions

    Get PDF
    High electrical conductivity is a prerequisite for improving the performance of organic semiconductors for various applications and can be achieved through molecular doping. However, often the conductivity is enhanced only up to a certain optimum doping concentration, beyond which it decreases significantly. We combine analytical work and Monte Carlo simulations to demonstrate that carrier-carrier interactions can cause this conductivity decrease and reduce the maximum conductivity by orders of magnitude, possibly in a broad range of materials. Using Monte Carlo simulations, we disentangle the effect of carrier-carrier interactions from carrier-dopant interactions. Coulomb potentials of ionized dopants are shown to decrease the conductivity, but barely influence the trend of conductivity versus doping concentration. We illustrate these findings using a doped fullerene derivative for which we can correctly estimate the carrier density at which the conductivity maximizes. We use grazing-incidence wide-angle X-ray scattering to show that the decrease of the conductivity cannot be explained by changes to the microstructure. We propose the reduction of carrier-carrier interactions as a strategy to unlock higher-conductivity organic semiconductors

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia

    Get PDF
    CONTEXT Colombia has a total of 27.2 million heads of cattle, ranking fourth among the Latin American countries. Identifying sustainable strategies to mitigate greenhouse gas emissions (GHGE) will help the Colombian government meet their goal of a 51% reduction in national emissions by 2030. Estimation of yield gaps for identifying the potential to improve cattle farms productivity and efficiency in Colombia help on reducing the GHGE intensities from the cattle sector. OBJECTIVE This paper aims to calculate the gap between attainable and actual milk and meat yields for specialized dairy, dual-purpose, cow-calf, and fattening production systems in 3 agro-ecological zones (AEZ) in Colombia; to identify the main aspects that restrict the meat and milk yields in these production systems; and analyze how closing yield gaps affect the carbon footprint (CF) of meat and milk production. METHODS The most suitable AEZs for cattle activities were identified by considering environmental, climatic, edaphic, and land characteristics. From a dataset of 1505 surveyed farms, a yield gap benchmarking analysis for estimating the potential to increase meat and milk yields in each of the identified AEZ was applied. The most productive farms were included in the “best farms” while the rest of the farms belonged to the “farms operating below potential”. A “cradle to farm-gate” Life Cycle Assessment was used to calculate the CF. Three scenarios were proposed for closing the yield gaps by 50, 75, and 100%, between the two groups of farms. RESULTS AND CONCLUSIONS Three AEZs likely to support cattle activities in Colombia were identified. Average milk production from the farms operating below potential was 45–50% of potential production, and meat was 34–51%, indicating that a potential to achieve increases in milk and meat productivity exists. CFs of 1 kg milk or meat were lower in the groups of best-performing farms than in the groups of farms operating below potential. Yield gaps for milk and meat production can be closed by improving cattle management practices and better technologies. As a general trend, closing the yield gaps decreases the CFs. SIGNIFICANCE Our findings contribute to understand the farms' current productive performance and provides key insights into the possible technological and managerial changes for improving the productivity of cattle systems in Colombia. In addition, the study showed how milk and meat CFs can be lowered with the adoption of proper cattle management practices, and better technologies

    The impact of SARS on hospital performance

    Get PDF
    © 2008 Chu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

    Get PDF
    Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control

    Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei

    Get PDF
    Background: Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. Methods/Principal Findings: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages 6150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (P K+/P Cl2,0.31), while the other two types of channels are slightl

    Ion homeostasis in the Chloroplast

    Full text link
    peer reviewedThe chloroplast is an organelle of high demand for macro- and micro-nutrient ions, which are required for the maintenance of the photosynthetic process. To avoid deficiency while preventing excess, homeostasis mechanisms must be tightly regulated. Here, we describe the needs for nutrient ions in the chloroplast and briefly highlight their functions in the chloroplastidial metabolism. We further discuss the impact of nutrient deficiency on chloroplasts and the acclimation mechanisms that evolved to preserve the photosynthetic apparatus. We finally present what is known about import and export mechanisms for these ions. Whenever possible, a comparison between cyanobacteria, algae and plants is provided to add an evolutionary perspective to the description of ion homeostasis mechanisms in photosynthesis

    Type 1 diabetes: translating mechanistic observations into effective clinical outcomes

    Full text link
    Type 1 diabetes remains an important health problem, particularly in Western countries where the incidence has been increasing in younger children(1). In 1986, Eisenbarth described Type 1 diabetes as a chronic autoimmune disease. Work over the past 3 ½ decades has identified many of the genetic, immunologic, and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Based on these findings, clinical trials have been conducted to test these hypotheses but have had mixed results. In this review, we discuss the findings that have led to current concepts of the disease mechanisms, how this understanding has prompted clinical studies, and the results of these studies. The findings from preclinical and clinical studies support the original proposed model for how type 1 diabetes develops, but have also suggested that this disease is more complex than originally thought and will require broader treatment approaches
    corecore