160 research outputs found

    Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition

    Get PDF
    Drained peatlands in temperate climates are under threat from climate change and human activities. The resulting decomposition of organic matter plays a major role in regulating the associated land subsidence rates, yet the determinants of aerobic and anaerobic peat decomposition rates are not fully understood. In this study, we sought to gain insight into the drivers of decomposition rates in botanically diverse peatlands (sedge, reed, wood, and moss dominant) under oxic and anoxic conditions. Peat samples were collected from the anoxic zone and incubated for 24 h (short) and 15 weeks (long) under either oxic or anoxic conditions. CO2 emissions, hydrolytic and oxidative exoenzyme potential activities, phenolic compound concentrations, and several edaphic factors were measured at the end of each incubation period. We found that 15 weeks of oxygen exposure of anoxic peat samples accelerated the average CO2 emissions by 3.9-fold. Reed and sedge peat respired more than wood and moss peat under anoxic conditions. Interestingly, CO2 emissions from anoxic peat layers under permanently anoxic conditions were substantial and given the thickness of peat deposits in the field, such activities may play an important role in long-term land subsidence rates and total CO2 emissions from drained peatlands. The results from the long-term incubations showed that decomposition rates appear to be also controlled by factors other than oxygen intrusion such as substrate availability. In summary, the botanical composition of the peat matrix, incubation conditions and time of incubation are all important factors that need to be considered when predicting peat decomposition and subsequent land subsidence rates

    К 125-летию Иовеля Григорьевича Кутателадзе (1887–1963)

    Get PDF
    Статья посвящена жизни и деятельности И. Г. Кутателадзе — основателя высшего фармацевтического образования и научной фармации в Грузии, выдающегося фармакохимика, основателя и директора Тбилисского научно-исследовательского института фармакохимии, который с 1964 г. носит его имя, председателя научного общества фармацевтов Грузии и академика АН Грузинской ССР. Впервые подробно исследуется одесский период его деятельности.The article is devoted to life and activity of I. G. Kutateladze, founder of higher pharmaceutical education and scientific pharmacy in Georgia, prominent pharmacochemist, founder and director of the Tbilisi Research Institute of Pharmacochemistry, which has had his name since 1964, chairman of scientific society of pharmacists of Georgia and academician of AS of Georgian SSR. The Odessa period of his activity has been studied in details for the first time

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Species traits interact with stress level to determine intraspecific facilitation and competition

    Get PDF
    Questions Flooding and drought stress are expected to increase significantly across the world and plant responses to these abiotic changes may be mediated by plant–plant interactions. Stress tolerance and recovery often require a biomass investment that may have consequences for these plant–plant interactions. Therefore, we questioned whether phenotypic plasticity in response to flooding and drought affected the balance between competition and facilitation for species with specific adaptations to drought or flooding. Location Utrecht University. Methods Stem elongation, root porosity, root:shoot ratio and biomass production were measured for six species during drought, well-drained and submerged conditions when grown alone or together with conspecifics. We quantified competition and facilitation as the ‘neighbour intensity effect’ directly after the 10-day treatment and again after a seven-day recovery period in well-drained conditions. Results Water stress, planting density and species identity interactively affected standardized stem elongation in a way that could lead to facilitation during submergence for species that preferably grow in wet soils. Root porosity was affected by the interaction between neighbour presence and time-step. Plant traits were only slightly affected during drought. The calculated neighbour interaction effect indicated facilitation for wetland species during submerged conditions and, after a period to recover from flooding, for species that prefer dry habitats. Conclusions Our results imply that changing plant–plant interactions in response to submergence and to a lesser extent to drought should be considered when predicting vegetation dynamics due to changing hydroclimatic regimes. Moreover, facilitation during a recovery period may enable species maladapted to flooding to persist

    Facilitation: Isotopic evidence that wood-boring beetles drive the trophic diversity of secondary decomposers

    Get PDF
    Deadwood heterogeneity is regarded as a primary causal driver of deadwood-associated soil biodiversity, but the underlying mechanisms remain elusive. This is partly due to the technical difficulties in disentangling and quantifying different components (e.g., deadwood is both habitat and food) of heterogeneity to which soil organisms may have context-dependent responses. Furthermore, non-trophic interactions, e.g., facilitation, also add complexity to deadwood heterogeneity-biodiversity relationships, yet their influences are unaccounted for in most deadwood biodiversity studies. To address these research gaps, we sampled isopod communities from 40 logs of two isotopically distinct tree species, which had been cut and incubated reciprocally for eight years in each of two environmentally contrasting sites (e.g., differences in background isotopic signatures and litter turnover rates). We then assessed the extent to which the variation in the biodiversity of isopod communities is explained by deadwood heterogeneity induced by wood-boring beetles. Stable isotope ratios (i.e., δ13C and δ15N) were employed to examine the response of trophic diversity of isopod communities to the rarely tested food facet of deadwood heterogeneity. We hypothesized the deadwood heterogeneity is boosted by wood-boring beetles and thereby positively affects the abundance, taxonomic diversity and trophic diversity of isopod communities. Our results supported this hypothesis: the abundance and Shannon and Simpson diversity as well as trophic diversity of isopods were positively correlated to wood-boring beetle tunnel densities in both sites and across the two tree species. We observed significant tree species and reciprocal treatment effects on the δ15N values of isopods in one of the two sites. This result suggested that the use of deadwood as food sources versus habitats by isopods is environmentally dependent. This study demonstrates that there is substantial heterogeneity within deadwood that promotes the diversity and trophic diversity of macroinvertebrates. This relationship is mediated by saproxylic beetle facilitation, with implications for the roles of saproxylic beetles and within-deadwood heterogeneity in determining microbial wood decomposition in temperate forests

    Rewetting drained peatlands through subsoil infiltration stabilises redox-dependent soil carbon and nutrient dynamics

    Get PDF
    Centuries of drainage have stimulated peat decomposition. To counteract the resulting increase in greenhouse gas emission and land subsidence in Dutch agricultural peatlands, passive and active subsurface infiltration (SSI) systems have been developed for peatland rewetting. Here, we studied the effects of SSI systems on groundwater levels, porewater composition and redox potential in four drained peatlands in the Netherlands to determine how soil processes are affected, especially carbon and nutrient dynamics. For three years, groundwater levels were measured continuously, and porewater samples were collected 8–10 times per year in paired SSI (active and passive) and control plots. SSI plots had higher summer groundwater levels and less seasonal fluctuation in groundwater levels than control plots. Redox potential and porewater composition in control plots reflected dominance of oxidation processes during dry periods in the upper soil layers, whereas SSI plots showed dominance of reduction processes in these layers throughout the year. These differences between control and SSI plots were strongest at locations with active SSI systems. Our results show that SSI systems can be effective measures to raise and stabilise groundwater levels in drained peatlands, which results in more stable redox zonation and dominance of anaerobic soil processes, especially during dry periods and when active SSI systems are applied. On the short term, a switch from oxic to anoxic conditions can cause mobilisation of phosphorus and ammonium, while on the longer term the application of SSI can lead to substantial change in carbon and nutrient dynamics. Understanding the full effects of implementing SSI systems and other mitigation measures in drained peatlands is important before they are applied on a large scale

    Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs

    Get PDF
    Dead tree trunks have significant ecosystem functions related to biodiversity and biogeochemical cycles. When lying on the soil surface, they are colonized by an array of invertebrate fauna, but what determines their community composition is still unclear. We apply community assembly theory to colonization of tree logs by invertebrates. During early decomposition, the attached bark is critically important as an environment filter for community assembly through habitat provision. Specifically, we hypothesized that the more dissimilar bark traits were between tree species, the more their faunal community compositions would differ. We tested this hypothesis by investigating the effects of bark traits on the invertebrate communities in the early-decomposing logs of 11 common, temperate tree species placed in the ‘common garden’ experiment LOGLIFE. Bark traits included bark looseness, fissure index, outer bark thickness, ratio of inner to outer bark thickness, punch resistance, water storage capacity and bark pH. The predominant faunal groups studied were Annelida, Isopoda, Chilopoda, Diplopoda, Diptera and Coleoptera. Our results showed (i) strong interspecific differences in bark traits, (ii) that bark traits related to environmental buffering had profound effects on the abundance of specific invertebrate groups, and (iii) the higher the overall bark trait dissimilarity between tree species, the more dissimilar these tree species were in faunal community composition, and the higher was the joint invertebrate family richness. A suite of bark traits together has fundamental afterlife effects on invertebrate community assembly, strongly filtering the colonizing invertebrates in early-decomposing logs, driving variation in their community composition and diversity. Our findings indicate that bark trait dissimilarity among tree species in forest stands is likely a better indicator of early-phase dead trunk fauna diversity than tree species diversity per se. A lay summary is available for this article.</p

    Space resource utilization of dominant species integrates abundance- and functional-based processes for better predictions of plant diversity dynamics

    Get PDF
    Sustainable ecosystem management relies on our ability to predict changes in plant diversity and to understand the underlying mechanisms. Empirical evidence demonstrates that abundance- and functional-based processes simultaneously explain the loss of plant diversity in response to human activities. Recently, a novel indicator based on percent cover (CoverD) and maximum height (HeightD) of the dominant plant species – space resource utilization (SRUD) – has proven to give robust and better predictions of plant diversity dynamics than community biomass. Whether the superior predictive ability of SRUD is due to its capacity to simultaneously capture abundance- and functional-based processes remains unknown. Here, we tested this hypothesis by quantifying mechanistic links between changes in SRUD and biodiversity in response to nutrients and herbivores. Furthermore, we assessed the relative contribution of dominant, intermediate and rare species to reduced density of individuals by combining null model analysis with field experiments. We found that SRUD successfully captured changes in ground-level light availability and changes in the number of individuals to predict plant diversity dynamics, and each of CoverD and HeightD partly and independently contributed to both processes. Comparative results from null model analysis and field experiments confirmed that individual losses of dominant, intermediate and rare species followed non-random processes. Specifically, compared with random loss process, rare species lost proportionally more individuals and thus disproportionately contributed to species loss, while dominant and intermediate species lost less. Our results demonstrate that SRUD captures both abundance- and functional-based processes thus explaining why SRUD provides more accurate predictions of changes in species diversity. Given that rare species can play an important role in shaping community structure, resisting against invasion, impacting higher trophic levels and providing multiple ecosystem functions, reducing the SRU of dominant species could alleviate the risk of exclusion of rare species by mitigating abundance- and functional-based competition processes

    Stem traits, compartments and tree species affect fungal communities on decaying wood

    Get PDF
    Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees
    corecore