16 research outputs found

    Revisiting Nucleosynthesis Constraints on Primordial Magnetic Fields

    Get PDF
    In view of several conflicting results, we reanalyze the effects of magnetic fields on the primordial nucleosynthesis. In the case the magnetic field is homogeneous over a horizon volume, we show that the main effects of the magnetic field are given by the contribution of its energy density to the Universe expansion rate and the effect of the field on the electrons quantum statistics. Although, in order to get an upper limit on the field strength, the weight of the former effect is numerically larger, the latter cannot be neglected. Including both effects in the PN code we get the upper limit B1×1011B \le 1\times 10^{11} Gauss at the temperature T=109 oKT = 10^9~^oK. We generalize the considerations to cases when instead the magnetic is inhomogeneous on the horizon length. We show that in these cases only the effect of the magnetic field on the electrons statistics is relevant. If the coherence length of the magnetic field at the end of the PN is in the range 10L0101110 \ll L_0 \ll 10^{11} cm our upper limit is B1×1012B \le 1\times 10^{12} Gauss.Comment: 12 pages LaTex file with two included ps fig

    Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    Get PDF
    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates

    Magnetic Fields in the Early Universe

    Get PDF
    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise anyhow. Among these effects, we discuss the consequences of strong magnetic fields on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes. Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also dicussed.Comment: 152 LaTeX pages, 6 figures., final version to appear in Phys. Re

    Dopamine, Glutamate, and Aggression

    No full text
    corecore