46 research outputs found
Protein disorder prediction at multiple levels of sensitivity and specificity
Background: Many protein regions and some entire proteins have no definite tertiary structure, existing instead as dynamic, disorder ensembles under different physiochemical circumstances. Identification of these protein disorder regions is important for protein production, protein structure prediction and determination, and protein function annotation. A number of different disorder prediction software and web services have been developed since the first predictor was designed by Dunker\u27s lab in 1997. However, most of the software packages use a pre-defined threshold to select ordered or disordered residues. In many situations, users need to choose ordered or disordered residues at different sensitivity and specificity levels. Results: Here we benchmark a state of the art disorder predictor, DISpro, on a large protein disorder dataset created from Protein Data Bank and systematically evaluate the relationship of sensitivity and specificity. Also, we extend its functionality to allow users to trade off specificity and sensitivity by setting different decision thresholds. Moreover, we compare DISpro with seven other automated disorder predictors on the 95 protein targets used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). DISpro is ranked as one of the best predictors. Conclusion: The evaluation and extension of DISpro make it a more valuable and useful tool for structural and functional genomics
Protein disorder prediction at multiple levels of sensitivity and specificity
BACKGROUND: Many protein regions and some entire proteins have no definite tertiary structure, existing instead as dynamic, disorder ensembles under different physiochemical circumstances. Identification of these protein disorder regions is important for protein production, protein structure prediction and determination, and protein function annotation. A number of different disorder prediction software and web services have been developed since the first predictor was designed by Dunker's lab in 1997. However, most of the software packages use a pre-defined threshold to select ordered or disordered residues. In many situations, users need to choose ordered or disordered residues at different sensitivity and specificity levels. RESULTS: Here we benchmark a state of the art disorder predictor, DISpro, on a large protein disorder dataset created from Protein Data Bank and systematically evaluate the relationship of sensitivity and specificity. Also, we extend its functionality to allow users to trade off specificity and sensitivity by setting different decision thresholds. Moreover, we compare DISpro with seven other automated disorder predictors on the 95 protein targets used in the seventh edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7). DISpro is ranked as one of the best predictors. CONCLUSION: The evaluation and extension of DISpro make it a more valuable and useful tool for structural and functional genomics
Inferring causal molecular networks: empirical assessment through a community-based effort.
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Evolving Efficient Foraging Behavior in Biologically-Inspired Robot Swarms
Human beings are driven to explore distant new worlds as we seek to better understand our place in the Universe. Because of the inherent dangers of human spaceflight, we often send robots as surrogate explorers, controlled from millions of miles away by teams of capable rover drivers here on Earth. As technology continues to advance, scientists and engineers aspire to build low-cost, durable, fully autonomous rovers to succeed today's tele-operated extraplanetary explorers.
Here we aim to advance this goal by designing and programming robots that can successfully navigate unknown and variable environments. We present a swarm robotics system that mimics the foraging behaviors of seed-harvester ants, employing evolutionary computation and machine learning to mitigate the adverse effects of unreliable information, variable environments, congestion bottlenecks, and sparse resources. We describe a central-place foraging algorithm (CPFA) whose parameters are evolved by a genetic algorithm (GA) to maximize foraging performance under different experimental conditions.
We find that foraging for resources in heterogeneous clusters requires more complex communication, memory, and environmental sensing than strategies evolved in previous work. Additionally, we observe sub-linear scaling in resources collected per robot as swarm size increases, which we attribute to the "bottleneck" constraint imposed by central-place foraging. Finally, we augment our foraging robot swarm with machine learning and statistical models, demonstrating that combining our existing biologically-inspired CPFA with a cluster exploitation algorithm produces more efficient total resource collection compared to each algorithm acting alone.
While our system is designed to be a demonstration platform for swarm robotics research, this work provides a foundation for designing and implementing autonomous robot swarms that can function outside of the academic research laboratory. The ability of robot swarms to tolerate sensor noise, adapt to variable environments, distribute work across large teams, and identify and exploit heterogeneously-distributed resources are all critical factors for successful remote exploration missions on distant worlds.National Science Foundation,
Defense Advanced Research Projects Agency,
James S. McDonnell FoundationComputer ScienceDoctoralUniversity of New Mexico. Dept. of Computer ScienceMoses, Melanie E.Tapia, LydiaFierro, RafaelWinfield, Alan F.T
A Multi-Agent System Approach to Load-Balancing and Resource Allocation for Distributed Computing
International audienceIn this research we use a decentralized computing approach to allocate and schedule tasks on a massively distributed grid. Using emergent properties of multi-agent systems, the algorithm dynamically creates and dissociates clusters to serve the changing resource demands of a global task queue. The algorithm is compared to a standard first-in first-out (FIFO) scheduling algorithm. Experiments done on a simulator show that the distributed resource allocation protocol (dRAP) algorithm outperforms the FIFO scheduling algorithm on time to empty queue, average waiting time and CPU utilization. Such a decentralized computing approach holds promise for massively distributed processing scenarios like SETI@home and Google MapReduce