25 research outputs found

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Predissociation of the B³ Σu− state of S₂: A coupled-channel model

    No full text
    This research was supported by NASA Grant No. NNX12AG61G to Wellesley College

    The photochemical fractionation of oxygen isotopologues in Titan’s atmosphere

    No full text
    The origin of CO and the external source of H2O in the atmosphere of Titan is still a matter of debate. We investigated the chemical fractionation of oxygen isotopologues in order to give new constraints on the origin of oxygen species. We created a new chemical scheme and we developed a 1-D time-dependent photochemical model to compute the mole fraction profiles of various oxygen isotopologues. We show that the photochemical fractionation of oxygen isotopologues is quite low. Observations of C18O and CO18O are compatible with both an external origin or an internal origin of CO considering that the various sources of oxygen have a cometary 16O/18O ratio (16O/18O ≈ 500). Improvement of the measurements of the 16O/18O ratio in both Enceladus' plumes and atmospheric CO2 could give a valuable constraint on the origin of oxygen in Titan's atmosphere

    Indirect predissociation of highly excited singlet states of N2

    No full text
    Indirect predissociation of the bâ€Č 1ÎŁu+(v = 20) level of N2 is studied experimentally by vacuum-ultraviolet photoabsorption employing synchrotron radiation and a Fourier-transform spectrometer, and interpreted with the aid of a quantitative model of interacting 1Πu and 1ÎŁu+, bound and unbound states which solves the coupled Schrödinger equation. An observed rotationally-localised peak in the bâ€Č(20) predissociation linewidths is identified by the model as arising from an interaction with a strongly predissociated and unobserved bound level of the mixed c3 1Πu and o3 1Πu Rydberg states. This leads to the dissociation of bâ€Č(20) into the continuum of the b 1Πu valence state. The residual observed predissociation of bâ€Č 1ÎŁu+(v = 20) apart from the rotationally-localised peak cannot be explained by a mechanism of 1Πu and 1ÎŁu+ interaction, and must involve states of higher multiplicity

    Non-thermal photons and direct photodissociation of H2_2, HD and HeH+^+ in the chemistry of the primordial Universe

    Get PDF
    International audienceNon-thermal photons deriving from radiative transitions among the internal ladder of atoms and molecules are an important source of photons in addition to thermal and stellar sources in many astrophysical environments. In the present work, the calculation of reaction rates for the direct photodissociation of some molecules relevant in early Universe chemistry is presented; in particular, the calculations include non-thermal photons deriving from the recombination of primordial hydrogen and helium atoms for the cases of H_2, HD and HeH^+. New effects on the fractional abundances of chemical species are investigated and the fits for the HeH^+ photodissociation rates by thermal photons are provided
    corecore