37 research outputs found

    Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.)

    Get PDF
    Societal Impact Statement Crop wild relatives—wild species closely related to cultivated plants—are valuable genetic resources for crop improvement, but gaps in knowledge constrain their conservation and limit their further use. We develop new information on the distributions, potential breeding value, and conservation status of the 16 known wild relatives of cultivated pumpkins, squashes, zucchini, and gourds (Cucurbita L.). The taxa occur from the central USA to Central America, plus two South American species, with the greatest richness in central Mexico and the western borderlands between Mexico and the USA. We determine the majority of species are of medium priority for conservation, both with regard to collecting for ex situ maintenance, and for enhanced habitat protection. Summary Crop wild relatives are valuable genetic resources for crop improvement. Knowledge gaps, including with regard to taxonomy, distributions, and characterization for traits of interest constrain their use in plant breeding. These deficiencies also affect conservation planning, both with regard to in situ habitat protection, and further collection of novel diversity for ex situ maintenance. Here we model the potential ranges of all 16 known wild cucurbit taxa (Cucurbita L.), use ecogeographic information to infer their potential adaptations to abiotic stresses, and assess their ex situ and in situ conservation status. The taxa occur from the central USA to Central America, plus two South American species. Predicted taxon richness was highest in central Mexico and in the western borderlands between Mexico and the USA. We find substantial ecogeographic variation both across taxa and among populations within taxa, with regard to low temperatures, high and low precipitation, and other adaptations of potential interest for crop breeding. We categorize 13 of the taxa medium priority for further conservation as a combination of the ex situ and in situ assessments, two low priority, and one sufficiently conserved. Further action across the distributions of the taxa, with emphasis on taxonomic richness hotspots, is needed to comprehensively conserve wild Cucurbita populations

    Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae

    Get PDF
    The evolution of chemical complexity has been a major driver of plant diversification, with novel compounds serving as key innovations. The species-rich mint family (Lamiaceae) produces an enormous variety of compounds that act as attractants and defense molecules in nature and are used widely by humans as flavor additives, fragrances, and anti-herbivory agents. To elucidate the mechanisms by which such diversity evolved, we combined leaf transcriptome data from 48 Lamiaceae species and four outgroups with a robust phylogeny and chemical analyses of three terpenoid classes (monoterpenes, sesquiterpenes, and iridoids) that share and compete for precursors. Our integrated chemical–genomic–phylogenetic approach revealed that: (1) gene family expansion rather than increased enzyme promiscuity of terpene synthases is correlated with mono- and sesquiterpene diversity; (2) differential expression of core genes within the iridoid biosynthetic pathway is associated with iridoid presence/absence; (3) generally, production of iridoids and canonical monoterpenes appears to be inversely correlated; and (4) iridoid biosynthesis is significantly associated with expression of geraniol synthase, which diverts metabolic flux away from canonical monoterpenes, suggesting that competition for common precursors can be a central control point in specialized metabolism. These results suggest that multiple mechanisms contributed to the evolution of chemodiversity in this economically important family. The mint family (Lamiaceae) includes many culturally and economically important species and collectively exhibits an exceptionally high degree of chemical diversity. Using an integrated chemical-genomic-phylogenetic approach, gene family expansion, altered gene expression of key biosynthetic pathway genes, and flux of precursors were shown to underlie the evolution of chemodiversity observed in this chemically rich clade

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Tumour tissue‐derived small extracellular vesicles reflect molecular subtypes of bladder cancer

    No full text
    Abstract mRNA‐based molecular subtypes have implications for bladder cancer prognosis and clinical benefit from certain therapies. Whether small extracellular vesicles (sEVs) can reflect bladder cancer molecular subtypes is unknown. We performed whole transcriptome RNA sequencing for formalin fixed paraffin embedded (FFPE) tumour tissues and sEVs separated from matched tissue explants, urine and plasma in patients with bladder cancer. sEVs were separated using size‐exclusion chromatography, and characterized by transmission electron microscopy, nano flow cytometry and western blots, respectively. High yield of sEVs were obtained using approximately 1 g of tissue, incubated with media for 30 min. FFPE tumour tissue and tumour tissue‐derived sEVs demonstrated good concordance in molecular subtype classification. All urinary sEVs were classified as luminal subtype, while all plasma sEVs were classified as Ba/Sq subtype, regardless of the molecular subtypes indicated by their matched FFPE tumour tissue. The comparison within urine sEVs, which may exclude the sample type specific background, could pick up the different biology between NMIBC and MIBC, as well as the signature genes related to molecular subtypes. Four candidate sEV‐related bladder cancer‐specific mRNA biomarkers, FAM71E2, OR4K5, FAM138F and KRTAP26‐1, were identified by analysing matched urine sEVs, tumour tissue derived sEVs, and adjacent normal tissue derived sEVs. Compared to sEVs separated from biofluids, tissue‐derived sEVs may reflect more tissue‐ or disease‐specific biological features. Urine sEVs are promising biomarkers to be used for liquid biopsy‐based molecular subtype classification, but the current algorithm needs to be modified/adjusted. Future work is needed to validate the four new bladder cancer‐specific biomarkers in large cohorts

    Photographs_of_Plants_Used_in_this_Study

    No full text
    All 52 species, except Tectona and three outgroups (Aureolaria, Paulownia, Petrea), were kept in a common greenhouse room at the University of Florida with air-conditioning and sampled within a period of six months (July 2015-January 2016). Most plants were sampled between 10:00 AM and 1:00 PM. Mean temperature inside the greenhouse room was 76°F (67–81°F) and mean humidity was 62% (49–75%). All plants were at an adult stage and the majority were at the vegetative stage (i.e., not flowering) when sampled (see Dataset 1 for details). With the exception of four species with limited plant material, fully expanded young leaves were preferentially sampled from a single individual; however, older leaves had to be sampled, especially for species with smaller leaves, to fulfill the total amount of material needed to distribute to perform metabolite profiling and transcriptome sequencing. Photographs were taken on the day of sampling
    corecore