28 research outputs found

    Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people (Review)

    Get PDF
    BackgroundThere is evidence that water-loss dehydration is common in older people and associated with many causes of morbidity and mortality.However, it is unclear what clinical symptoms, signs and tests may be used to identify early dehydration in older people, so that support can be mobilised to improve hydration before health and well-being are compromised.ObjectivesTo determine the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs and tests to be used as screeningtests for detecting water-loss dehydration in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over. Water-loss dehydration was defined primarily as including everyone with either impending or current water-loss dehydration (including all those with serum osmolality ≥ 295 mOsm/kg as being dehydrated).Search methodsStructured search strategies were developed for MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL, LILACS, DARE and HTAdatabases (The Cochrane Library), and the International Clinical Trials Registry Platform (ICTRP). Reference lists of included studiesand identified relevant reviews were checked. Authors of included studies were contacted for details of further studies.Selection criteriaTitles and abstracts were scanned and all potentially relevant studies obtained in full text. Inclusion of full text studies was assessed independently in duplicate, and disagreements resolved by a third author. We wrote to authors of all studies that appeared to have collected data on at least one reference standard and at least one index test, and in at least 10 people aged ≥ 65 years, even where no comparative analysis has been published, requesting original dataset so we could create 2 x 2 tables.Data collection and analysis.Diagnostic accuracy of each test was assessed against the best available reference standard for water-loss dehydration (serum or plasma osmolality cut-off≥295mOsm/kg, serumosmolarity or weight change) within each study. For each index test study data were presented in forest plots of sensitivity and specificity. The primary target condition was water-loss dehydration (including either impending or current water-loss dehydration). Secondary target conditions were intended as current (> 300 mOsm/kg) and impending (295 to 300 mOsm/kg) water-loss dehydration, but restricted to current dehydration in the final review.We conducted bivariate random-effects meta-analyses (Stata/IC, StataCorp) for index tests where there were at least four studies and study datasets could be pooled to construct sensitivity and specificity summary estimates. We assigned the same approach for index tests with continuous outcome data for each of three pre-specified cut-off points investigated.Pre-set minimum sensitivity of a useful test was 60%, minimum specificity 75%. As pre-specifying three cut-offs for each continuoustest may have led to missing a cut-off with useful sensitivity and specificity, we conducted post-hoc exploratory analyses to createreceiver operating characteristic (ROC) curves where there appeared some possibility of a useful cut-off missed by the original three.These analyses enabled assessment of which tests may be worth assessing in further research. A further exploratory analysis assessed the value of combining the best two index tests where each had some individual predictive ability.Main resultsThere were few published studies of the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs or tests tobe used as screening tests for detecting water-loss dehydration in older people. Therefore, to complete this review we sought, analysed and included raw datasets that included a reference standard and an index test in people aged ≥ 65 years.We included three studies with published diagnostic accuracy data and a further 21 studies provided datasets that we analysed. Weassessed 67 tests (at three cut-offs for each continuous outcome) for diagnostic accuracy of water-loss dehydration (primary targetcondition) and of current dehydration (secondary target condition).Only three tests showed any ability to diagnose water-loss dehydration (including both impending and current water-loss dehydration) as stand-alone tests: expressing fatigue (sensitivity 0.71 (95% CI 0.29 to 0.96), specificity 0.75 (95% CI 0.63 to 0.85), in one study with 71 participants, but two additional studies had lower sensitivity); missing drinks between meals (sensitivity 1.00 (95% CI 0.59 to 1.00), specificity 0.77 (95% CI 0.64 to 0.86), in one study with 71 participants) and BIA resistance at 50 kHz (sensitivities 1.00 (95% CI 0.48 to 1.00) and 0.71 (95% CI 0.44 to 0.90) and specificities of 1.00 (95% CI 0.69 to 1.00) and 0.80 (95% CI 0.28 to 0.99) in 15 and 22 people respectively for two studies, but with sensitivities of 0.54 (95% CI 0.25 to 0.81) and 0.69 (95% CI 0.56 to 0.79) and specificities of 0.50 (95% CI 0.16 to 0.84) and 0.19 (95% CI 0.17 to 0.21) in 21 and 1947 people respectively in two other studies). In post-hoc ROC plots drinks intake, urine osmolality and axillial moisture also showed limited diagnostic accuracy. No test was consistently useful in more than one study.Combining two tests so that an individual both missed some drinks between meals and expressed fatigue was sensitive at 0.71 (95%CI 0.29 to 0.96) and specific at 0.92 (95% CI 0.83 to 0.97).There was sufficient evidence to suggest that several stand-alone tests often used to assess dehydration in older people (including fluid intake, urine specific gravity, urine colour, urine volume, heart rate, dry mouth, feeling thirsty and BIA assessment of intracellular water or extracellular water) are not useful, and should not be relied on individually as ways of assessing presence or absence of dehydration in older people.No tests were found consistently useful in diagnosing current water-loss dehydration.Authors’ conclusionsThere is limited evidence of the diagnostic utility of any individual clinical symptom, sign or test or combination of tests to indicatewater-loss dehydration in older people. Individual tests should not be used in this population to indicate dehydration; they miss a highproportion of people with dehydration, and wrongly label those who are adequately hydrated.Promising tests identified by this review need to be further assessed, as do new methods in development. Combining several tests may improve diagnostic accuracy

    Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape

    Get PDF
    Prediction of high latitude response to climate change is hampered by poor understanding of the role of nonlinear changes in ecosystem forcing and response. While the effects of nonlinear climate change are often delayed or dampened by internal ecosystem dynamics, recent warming events in the Arctic have driven rapid environmental response, raising questions of how terrestrial and freshwater systems in this region may shift in response to abrupt climate change. We quantified environmental responses to recent abrupt climate change in West Greenland using long-term monitoring and paleoecological reconstructions. Using >40 years of weather data, we found that after 1994, mean June air temperatures shifted 2.2 °C higher and mean winter precipitation doubled from 21 to 40 mm; since 2006, mean July air temperatures shifted 1.1 °C higher. Nonlinear environmental responses occurred with or shortly after these abrupt climate shifts, including increasing ice sheet discharge, increasing dust, advancing plant phenology, and in lakes, earlier ice out and greater diversity of algal functional traits. Our analyses reveal rapid environmental responses to nonlinear climate shifts, underscoring the highly responsive nature of Arctic ecosystems to abrupt transitions

    Height, selected genetic markers and prostate cancer risk:Results from the PRACTICAL consortium

    Get PDF
    Background: Evidence on height and prostate cancer risk is mixed, however, recent studies with large data sets support a possible role for its association with the risk of aggressive prostate cancer. Methods: We analysed data from the PRACTICAL consortium consisting of 6207 prostate cancer cases and 6016 controls and a subset of high grade cases (2480 cases). We explored height, polymorphisms in genes related to growth processes as main effects and their possible interactions. Results: The results suggest that height is associated with high-grade prostate cancer risk. Men with height 4180cm are at a 22% increased risk as compared to men with height o173cm (OR 1.22, 95% CI 1.01–1.48). Genetic variants in the growth pathway gene showed an association with prostate cancer risk. The aggregate scores of the selected variants identified a significantly increased risk of overall prostate cancer and high-grade prostate cancer by 13% and 15%, respectively, in the highest score group as compared to lowest score group. Conclusions: There was no evidence of gene-environment interaction between height and the selected candidate SNPs. Our findings suggest a role of height in high-grade prostate cancer. The effect of genetic variants in the genes related to growth is seen in all cases and high-grade prostate cancer. There is no interaction between these two exposures.</p

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task.

    Get PDF
    Response inhibition is essential for navigating everyday life. Its derailment is considered integral to numerous neurological and psychiatric disorders, and more generally, to a wide range of behavioral and health problems. Response-inhibition efficiency furthermore correlates with treatment outcome in some of these conditions. The stop-signal task is an essential tool to determine how quickly response inhibition is implemented. Despite its apparent simplicity, there are many features (ranging from task design to data analysis) that vary across studies in ways that can easily compromise the validity of the obtained results. Our goal is to facilitate a more accurate use of the stop-signal task. To this end, we provide 12 easy-to-implement consensus recommendations and point out the problems that can arise when they are not followed. Furthermore, we provide user-friendly open-source resources intended to inform statistical-power considerations, facilitate the correct implementation of the task, and assist in proper data analysis

    Clinical and physical signs for identification of impending and current water-loss dehydration in older people

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows:.To determine the diagnostic accuracy of state, minimally invasive clinical and physical signs (or sets of signs) to be used as screening tests for detecting impending or current water-loss dehydration, or both, in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over..To assess the effect of different cut offs of index test results assessed using continuous data on sensitivity and specificity in diagnosis of impending or current water-loss dehydration..To identify clinical and physical signs that may be used in screening for impending or current water-loss dehydration in older people..To identify clinical and physical signs that are not useful in screening for impending or current water-loss dehydration in older people..To directly compare promising index tests (sensitivity ? 0.60 and specificity ? 0.75) where two or more are measured in a single study (direct comparison)..To carry out an exploratory analysis to assess the value of combining the best three index tests where the three tests each have some predictive ability of their own, and individual studies include participants who had all three tests.We will explore sources of heterogeneity of diagnostic accuracy of individual clinical and physical signs that show some evidence of discrimination by the reference standard used, cut off value for tests providing continuous data, type of participants (community-dwelling older people, those in residential care, and those in hospital), sex, and baseline prevalence of dehydration.5. To carry out an exploratory analysis to assess the value of combining the best three index tests where the three tests each have some predictive ability of their own, and individual studies include participants who had all three tests.We will explore sources of heterogeneity of diagnostic accuracy of individual clinical and physical signs that show some evidence ofdiscrimination by the reference standard used, cut off value for tests providing continuous data, type of participants (communitydwellingolder people, those in residential care, and those in hospital), sex, and baseline prevalence of dehydration
    corecore