1,646 research outputs found
Formation of helium spectrum in solar quiescent prominences
We present new non-LTE modelling of the helium spectrum emitted by quiescent solar prominences. The calculations are made in the frame of a one-dimensional plane-parallel slab. The physical parameters of our models are the electron temperature, the gas pressure, the slab width, the microturbulent velocity and the height above the solar surface. In this paper, we present isothermal isobaric models for a large range of temperature and pressure values. This work brings considerable improvements over the calculations of Heasley and co-workers (Heasley et al. 1974, Heasley and Milkey 1976, 1978, 1983) with the inclusion in our calculations of partial redistribution effects in the formation of the HI Lyα, Lyβ, HeI λ 584 Å and HeII λ 304 Å lines. In addition we consider detailed incident profiles for the principal transitions. The statistical equilibrium equations are solved for a 33 bound levels (HeI and HeII) plus continuum atom, and the radiative transfer equations are solved by the Feautrier method with variable Eddington factors. In this way we obtain the helium level populations and the emergent line profiles. We discuss the influence of the physical parameters on the helium level populations and on the main helium spectral lines. The effect of helium abundance in the prominence plasma is also studied. Some relations between singlet and triplet lines are given, as well as between optically thin or thick lines, HeI and HeII lines, and between the HeI λ 5876 Å and HI λ 4863 Å lines. In a future work this numerical code will be used for the diagnostic of the prominence plasma by comparing the results with SUMER observations
Upper-class women reading celebrity news : audience reception study on celebrity news viewed through the lens of class
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Title from PDF of title page (University of Missouri--Columbia, viewed on November 17, 2009).Thesis advisor: Dr. Yong Volz.M.A. University of Missouri--Columbia 2009.This research attempts to understand the reception of celebrity news magazines among upper class women in the U.S. The ultimate goal of this research is to identify cultural repertoires about the consumption and use of celebrity news. These repertoires are compared to ones found in Joke Hermes (1995) study on British tabloid readers. Qualitative research methods provide the framework for this study and in-depth interviews were conducted in order to collect detailed data. Data was collected from the interviews and analyzed for common themes and repertoires. I found most of the subjects read celebrity news with resistance to its dominant message. In fact, most readers negotiated the text and imprinted their own meanings onto it. Celebrity news permeates nearly all media outlets and has seen a recent surge of popularity and press time over the past ten years. Understanding what attracts readers to celebrity news is useful information for media scholars and professionals. A more intimate understanding of how women use celebrity news also helps to illuminate how being a celebrity newsreader affects women's lives.Includes bibliographical references
2D non-LTE radiative modelling of He I spectral lines formed in solar prominences
The diagnosis of new high-resolution spectropolarimetric observations of
solar prominences made in the visible and near-infrared mainly, requires a
radiative modelling taking into account for both multi-dimensional geometry and
complex atomic models. Hereafter we contribute to the improvement of the
diagnosis based on the observation of He I multiplets, by considering 2D
non-LTE unpolarized radiation transfer, and taking also into account the atomic
fine structure of helium. It is an improvement and a direct application of the
multi-grid Gauss-Seidel/SOR iterative scheme in 2D cartesian geometry developed
by us. It allows us to compute realistic emergent intensity profiles for the He
I 10830 A and D3 multiplets, which can be directly compared to the simultaneous
and high-resolution observations made at THeMIS. A preliminary 2D multi-thread
modelling is also discussed.Comment: 6 pages, 9 figures, A&
The properties of highly luminous IRAS galaxies
From a complete sample of 154 galaxies identified with IRAS sources in a 304 sq deg area centered on the South Galactic Pole, a subsample of 58 galaxies with L sub IR/L sub B > 3 was chosen. Low resolution spectra were obtained for 30% of the subsample and redshifts and relative emission line intensities were derived. As a class these galaxies are very luminous with = 2.9 x 10 to the 11th power L sub 0 and (L sub IR) max = 1.3 x 10 to the 12th power L sub 0. CCD images and JHK photometry were obtained for many of the subsample. The galaxies are for the most part newly identified and are optically faint, with a majority showing evidence of a recent interaction. Radio continuum observations of all galaxies of the subsample were recently obtained at 20 cm VLA with about 75% being detected in a typical integration time of about 10 minutes
Atomic layer deposition of Zn(O,S) thin films with tunable electrical properties by oxygen annealing
Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were annealed in oxygen to adjust the carrier concentration. The electron carrier concentration of Zn(O,S) can be reduced by several orders of magnitude from to by post-deposition annealing in oxygen at temperatures from 200 °C to 290 °C. In the case of Zn(O,S) with S/Zn = 0.37, despite the considerable change in the electron carrier concentration, the bandgap energy decreased by only ∼0.1 eV, and the crystallinity did not change much after annealing. The oxygen/zinc ratio increased by 0.05 after annealing, but the stoichiometry remained uniform throughout the film.Chemistry and Chemical BiologyEngineering and Applied Science
Probing the Galactic Bulge with deep Adaptive Optics imaging: the age of NGC 6440
We present first results of a pilot project aimed at exploiting the
potentiality of ground based adaptive optics imaging in the near infrared to
determine the age of stellar clusters in the Galactic Bulge. We have used a
combination of high resolution adaptive optics (ESO-VLT NAOS-CONICA) and
wide-field (ESO-NTT-SOFI) photometry of the metal rich globular cluster NGC
6440 located towards the inner Bulge, to compute a deep color magnitude diagram
from the tip of the Red Giant Branch down to J~22$, two magnitudes below the
Main Sequence Turn Off (TO). The magnitude difference between the TO level and
the red Horizontal Branch has been used as an age indicator. It is the first
time that such a measurement for a bulge globular cluster has been obtained
with a ground based telescope. From a direct comparison with 47 Tuc and with a
set of theoretical isochrones, we concluded that NGC 6440 is old and likely
coeval to 47 Tuc. This result adds a new evidence that the Galactic Bulge is ~2
Gyr younger at most than the pristine, metal poor population of the Galactic
Halo
High resolution near-IR spectra of NGC 6624 and NGC 6569
We present the first abundances analysis based on high-resolution infrared
(IR) echelle spectra of NGC 6569 and NGC 6624, two moderately reddened globular
clusters located in the outer bulge of the Galaxy. We find
[Fe/H]=-0.790.02 dex and [Fe/H]=-0.690.02 dex for NGC 6569 and NGC
6624, respectively and an average -elements enhancement of
+0.430.02 dex and +0.390.02 dex, consistent with previous
measurements on other metal-rich Bulge clusters. We measure accurate radial
velocities of and
and velocity dispersions of and for NGC 6569 and NGC 6624, respectively. Finally, we find very low
isotopics ratio (7 in NGC 6624 and 5 in NGC
6569), confirming the presence extra-mixing mechanisms during the red giant
branch evolution phase.Comment: 7 pages, 3 figures, accepted for publication on MNRA
Reversal-free CaIIH profiles: a challenge for solar chromosphere modeling in quiet inter-network
We study chromospheric emission to understand the temperature stratification
in the solar chromosphere. We observed the intensity profile of the CaIIH line
in a quiet Sun region close to the disk center at the German Vacuum Tower
Telescope. We analyze over 10^5 line profiles from inter-network regions. For
comparison with the observed profiles, we synthesize spectra for a variety of
model atmospheres with a non local thermodynamic equilibrium (NLTE) radiative
transfer code. A fraction of about 25% of the observed CaIIH line profiles do
not show a measurable emission peak in H_{2v} and H_{2r} wavelength bands
(reversal-free). All of the chosen model atmospheres with a temperature rise
fail to reproduce such profiles. On the other hand, the synthetic calcium
profile of a model atmosphere that has a monotonic decline of the temperature
with height shows a reversal-free profile that has much lower intensities than
any observed line profile. The observed reversal-free profiles indicate the
existence of cool patches in the interior of chromospheric network cells, at
least for short time intervals. Our finding is not only in conflict with a
full-time hot chromosphere, but also with a very cool chromosphere as found in
some dynamic simulations.Comment: 8 pages, accepted in A&
Implementation of PhotoZ under Astro-WISE - A photometric redshift code for large datasets
We describe the implementation of the PhotoZ code in the framework of the
Astro-WISE package and as part of the Photometric Classification Server of the
PanSTARRS pipeline. Both systems allow the automatic measurement of photometric
redshifts for the millions of objects being observed in the PanSTARRS project
or expected to be observed by future surveys like KIDS, DES or EUCLID.Comment: Accepted for publication in topical issue of Experimental Astronomy
on Astro-WISE information system, references update
The energy of waves in the photosphere and lower chromosphere: 1. Velocity statistics
Acoustic waves are one of the primary suspects besides magnetic fields for
the chromospheric heating process to temperatures above radiative equilibrium
(RE). We derived the mechanical wave energy as seen in line-core velocities to
obtain a measure of mechanical energy flux with height for a comparison with
the energy requirements in a semi-empirical atmosphere model. We analyzed a
1-hour time series and a large-area map of Ca II H spectra on the traces of
propagating waves. We analyzed the velocity statistics of several spectral
lines in the wing of Ca II H, and the line-core velocity of Ca II H. We
converted the velocity amplitudes into volume and mass energy densities. For
comparison, we used the increase of internal energy necessary to lift a RE
atmosphere to the HSRA temperature stratification. We find that the velocity
amplitude grows in agreement with linear wave theory and thus slower with
height than predicted from energy conservation. The mechanical energy of the
waves above around z~500 km is insufficient to maintain the chromospheric
temperature rise in the semi-empirical HSRA model. The intensity variations of
the Ca line core (z~1000 km) can be traced back to the velocity variations of
the lowermost forming spectral line considered (z~ 250 km). The chromospheric
intensity, and hence, (radiation) temperature variations are seen to be induced
by passing waves originating in the photosphere.Comment: 13 pages, 15 figures + 2 pages Appendix, 5 figures, submitted to A &
- …
