5 research outputs found
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Large language models (LLMs) have been shown to be able to perform new tasks
based on a few demonstrations or natural language instructions. While these
capabilities have led to widespread adoption, most LLMs are developed by
resource-rich organizations and are frequently kept from the public. As a step
towards democratizing this powerful technology, we present BLOOM, a
176B-parameter open-access language model designed and built thanks to a
collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer
language model that was trained on the ROOTS corpus, a dataset comprising
hundreds of sources in 46 natural and 13 programming languages (59 in total).
We find that BLOOM achieves competitive performance on a wide variety of
benchmarks, with stronger results after undergoing multitask prompted
finetuning. To facilitate future research and applications using LLMs, we
publicly release our models and code under the Responsible AI License
A review of learning in biologically plausible spiking neural networks
Artificial neural networks have been used as a powerful processing tool in various areas such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has encouraged researchers to improve artificial neural networks by investigating the biological brain. Neurological research has significantly progressed in recent years and continues to reveal new characteristics of biological neurons. New technologies can now capture temporal changes in the internal activity of the brain in more detail and help clarify the relationship between brain activity and the perception of a given stimulus. This new knowledge has led to a new type of artificial neural network, the Spiking Neural Network (SNN), that draws more faithfully on biological properties to provide higher processing abilities. A review of recent developments in learning of spiking neurons is presented in this paper. First the biological background of SNN learning algorithms is reviewed. The important elements of a learning algorithm such as the neuron model, synaptic plasticity, information encoding and SNN topologies are then presented. Then, a critical review of the state-of-the-art learning algorithms for SNNs using single and multiple spikes is presented. Additionally, deep spiking neural networks are reviewed, and challenges and opportunities in the SNN field are discussed
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License