172 research outputs found
Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge
At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration
Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism
After induction in secondary lymphoid organs, a subset of antibody-secreting cells (ASCs) homes to the bone marrow (BM) and contributes to long-term antibody production. The factors determining secondary lymphoid organ residence versus BM tropism have been unclear. Here we demonstrate that in mice treated with FTY720 or that lack sphingosine-1-phosphate (S1P) receptor-1 (S1P1) in B cells, IgG ASCs are induced and localize normally in secondary lymphoid organs but they are reduced in numbers in blood and BM. Many IgG ASCs home to BM on day 3 of the secondary response and day 3 splenic ASCs exhibit S1P responsiveness, whereas the cells remaining at day 5 are unable to respond. S1P1 mRNA abundance is higher in ASCs isolated from blood compared to spleen, whereas CXCR4 expression is lower. Blood ASCs also express higher amounts of Kruppel-like factor (KLF)2, a regulator of S1P1 gene expression. These findings establish an essential role for S1P1 in IgG plasma cell homing and they suggest that differential regulation of S1P1 expression in differentiating plasma cells may determine whether they remain in secondary lymphoid organs or home to BM
M/L, H-alpha Rotation Curves, and HI Measurements for 329 Nearby Cluster and Field Spirals: I. Data
A survey of 329 nearby galaxies (redshift z < 0.045) has been conducted to
study the distribution of mass and light within spiral galaxies over a range of
environments. The 18 observed clusters and groups span a range of richness,
density, and X-ray temperature, and are supplemented by a set of 30 isolated
field galaxies. Optical spectroscopy taken with the 200-inch Hale Telescope
provides separately resolved H-alpha and [NII] major axis rotation curves for
the complete set of galaxies, which are analyzed to yield velocity widths and
profile shapes, extents and gradients. HI line profiles provide an independent
velocity width measurement and a measure of HI gas mass and distribution.
I-band images are used to deconvolve profiles into disk and bulge components,
to determine global luminosities and ellipticities, and to check morphological
classification. These data are combined to form a unified data set ideal for
the study of the effects of environment upon galaxy evolution.Comment: 23 pages, 16 figures.; accepted for publication in AJ;
higher-resolution figures available at http://astronomy.nmsu.edu/nicole; typo
corrected in figure captions 14 - 16 (x-axes units are kpc/h, not arcseconds
M/L, H-alpha Rotation Curves, and HI Measurements for 329 Nearby Cluster and Field Spirals: II. Evidence for Galaxy Infall
We have conducted a study of optical and HI properties of spiral galaxies
(size, luminosity, H-alpha flux distribution, circular velocity, HI gas mass)
to explore the role of gas stripping as a driver of morphological evolution in
clusters. We find a strong correlation between the spiral and S0 fractions
within clusters, and the spiral fraction scales tightly with cluster X-ray gas
luminosity. We explore young star formation and identify spirals that are (1)
asymmetric, with truncated H-alpha emission and HI gas reservoirs on the
leading edge of the disk, on a first pass through the dense intracluster medium
in the cores of rich clusters; (2) strongly HI deficient and stripped, with
star formation confined to the inner 5 kpc/h and 3 disk scale lengths; (3)
reddened, extremely HI deficient and quenched, where star formation has been
halted across the entire disk. We propose that these spirals are in successive
stages of morphological transformation, between infalling field spirals and
cluster S0s, and that the process which acts to remove the HI gas reservoir
suppresses new star formation on a similarly fast timescale. These data suggest
that gas stripping plays a significant role in morphological transformation and
rapid truncation of star formation across the disk.Comment: 24 pages, 12 figures; accepted for publication in AJ;
higher-resolution figures available at http://astronomy.nmsu.edu/nicol
Recommended from our members
A systematic review of frameworks for the interrelationships of mental health evidence and policy in low- and middle-income countries
Background: The interrelationships between research evidence and policy-making are complex. Different theoretical frameworks exist to explain general evidence–policy interactions. One largely unexplored element of these interrelationships is how evidence interrelates with, and influences, policy/political agenda-setting. This review aims to identify the elements and processes of theories, frameworks and models on interrelationships of research evidence and health policy-making, with a focus on actionability and agenda-setting in the context of mental health in low- and middle-income countries (LMICs).
Methods: A systematic review of theories was conducted based on the BeHeMOTh search method, using a tested and refined search strategy. Nine electronic databases and other relevant sources were searched for peer-reviewed and grey literature. Two reviewers screened the abstracts, reviewed full-text articles, extracted data and performed quality assessments. Analysis was based on a thematic analysis. The included papers had to present an actionable theoretical framework/model on evidence and policy interrelationships, such as knowledge translation or evidence-based policy, specifically target the agenda-setting process, focus on mental health, be from LMICs and published in English.
Results: From 236 publications included in the full text analysis, no studies fully complied with our inclusion criteria. Widening the focus by leaving out ‘agenda-setting’, we included ten studies, four of which had unique conceptual frameworks focusing on mental health and LMICs but not agenda-setting. The four analysed frameworks confirmed research gaps from LMICs and mental health, and a lack of focus on agenda-setting. Frameworks and models from other health and policy areas provide interesting conceptual approaches and lessons with regards to agenda-setting.
Conclusion: Our systematic review identified frameworks on evidence and policy interrelations that differ in their elements and processes. No framework fulfilled all inclusion criteria. Four actionable frameworks are applicable to mental health and LMICs, but none specifically target agenda-setting. We have identified agenda-setting as a research theory gap in the context of mental health knowledge translation in LMICs. Frameworks from other health/policy areas could offer lessons on agenda-setting and new approaches for creating policy impact for mental health and to tackle the translational gap in LMICs
Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting
Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such largescale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1
COMPASS identifies T-cell subsets correlated with clinical outcomes.
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software
Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1–seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen
- …