3,694 research outputs found

    Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis

    Get PDF
    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in allWBDsamples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent ofWBDvia tests of Henle–Koch’s postulates, it will be vital to experimentally control for populations of the other potential pathogens identified in this study

    Basking shark breaching behaviour observations West of Shetland

    Get PDF
    This is the author accepted manuscript. The final version is available from BioMed Central via the DOI in this record.This study reports observations of basking sharks (Cetorhinus maximus) sighted during an offshore geophysical survey conducted in July and August 2013, west of Shetland, UK. During the 38-day survey, trained and dedicated marine wildlife observers recorded 19 sightings of basking sharks (n=22 individuals). Of these observations, 17 were of single sharks, with one observation of two sharks and one observation of three sharks. All surface sightings occurred in water with depths between 129 and 199 m, predominantly prior to noon local time (79%), and were mostly of sharks 6-8 m in length, although a young (2 m) individual was also recorded. Breaching behaviour was observed on 14 occasions, by individuals or in small groups. Breaching has been proposed as a male-male competitive behaviour during courtship displays and female basking sharks may breach to signal their readiness for mating. Aggregations of basking sharks at frontal systems are well documented and linked to the occurrence of prey patches; however, these oceanographic features may also be of importance to courtship. The high number of sightings of sharks recorded during a relatively short time frame in addition to breaching behaviour and presence of young individuals, suggest that this area west of Shetland may be an important habitat for the basking shark

    The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs

    Get PDF
    Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also called motor neuron disease, MND) are severe neurodegenerative diseases that show considerable overlap at the clinical and cellular level. The most common single mutation in families with FTD or ALS has recently been mapped to a non-coding repeat expansion in the uncharacterized gene C9ORF72. Although a plausible mechanism for disease is that aberrant C9ORF72 mRNA poisons splicing, it is important to determine the cellular function of C9ORF72, about which nothing is known

    The expression pattern of MUC1 (EMA) is related to tumour characteristics and clinical outcome of invasive ductal breast carcinoma

    Get PDF
    Aims: To clarify MUC1 patterns in invasive ductal breast carcinoma and to relate them to clinicopathological parameters, coexpression of other biological markers and prognosis. Methods and results: Samples from 243 consecutive patients with primary ductal carcinoma were incorporated into tissue microarrays (TMAs). Slides were stained for MUC1, oestrogen receptor (ER), progesterone receptor (PR), Her2/neu, p53 and cyclin D1. Apical membrane MUC1 expression was associated with smaller tumours (P = 0.001), lower tumour grades (P < 0.001), PR positivity (P = 0.003) and increased overall survival (OS; P = 0.030). Diffuse cytoplasmic MUC1 expression was associated with cyclin D1 positivity (P = 0.009) and increased relapse-free survival (RFS; P = 0.034). Negativity for MUC1 was associated with ER negativity (P = 0.004), PR negativity (P = 0.001) and cyclin D1 negativity (P = 0.009). In stepwise multivariate analysis MUC1 negativity was an independent predictor of both RFS [hazard ratio (HR) 3.5, 95% confidence interval (CI) 1.5, 8.5; P = 0.005] and OS (HR 14.7, 9 5% Cl 4.9, 44. 1; P < 0.001). Conclusions: The expression pattern of MUC1 in invasive ductal breast carcinoma is related to tumour characteristics and clinical outcome. In addition, negative MUC1 expression is an independent risk factor for poor RFS and OS, besides 'classical' prognostic indicators

    Long-time Low-latency Quantum Memory by Dynamical Decoupling

    Get PDF
    Quantum memory is a central component for quantum information processing devices, and will be required to provide high-fidelity storage of arbitrary states, long storage times and small access latencies. Despite growing interest in applying physical-layer error-suppression strategies to boost fidelities, it has not previously been possible to meet such competing demands with a single approach. Here we use an experimentally validated theoretical framework to identify periodic repetition of a high-order dynamical decoupling sequence as a systematic strategy to meet these challenges. We provide analytic bounds-validated by numerical calculations-on the characteristics of the relevant control sequences and show that a "stroboscopic saturation" of coherence, or coherence plateau, can be engineered, even in the presence of experimental imperfection. This permits high-fidelity storage for times that can be exceptionally long, meaning that our device-independent results should prove instrumental in producing practically useful quantum technologies.Comment: abstract and authors list fixe

    Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs

    Get PDF
    Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness

    The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010

    Get PDF
    Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 × 10-5 s-1 during clear days and (1 ± 0.3) × 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 μg m-3 to a maximum of 8.8 μg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 μg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union

    Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies.

    Get PDF
    Protein aggregation is a hallmark of major neurodegenerative disorders. Increasing data suggest that smaller aggregates cause higher toxic response than filamentous aggregates (fibrils). However, the size of small aggregates has challenged their detection within biologically relevant environments. Here, we report approaches to quantitatively super-resolve aggregates in live cells and ex vivo brain tissues. We show that Amytracker 630 (AT630), a commercial aggregate-activated fluorophore, has outstanding photophysical properties that enable super-resolution imaging of α-synuclein, tau, and amyloid-β aggregates, achieving ∼4 nm precision. Applying AT630 to AppNL-G-F mouse brain tissues or aggregates extracted from a Parkinson's disease donor, we demonstrate excellent agreement with antibodies specific for amyloid-β or α-synuclein, respectively, confirming the specificity of AT630. Subsequently, we use AT630 to reveal a linear relationship between α-synuclein aggregate size and cellular toxicity and discovered that aggregates smaller than 450 ± 60 nm (aggregate450nm) readily penetrated the plasma membrane. We determine aggregate450nm concentrations in six Parkinson's disease and dementia with Lewy bodies donor samples and show that aggregates in different synucleinopathies demonstrate distinct potency in toxicity. We further show that cell-penetrating aggregates are surrounded by proteasomes, which assemble into foci to gradually process aggregates. Our results suggest that the plasma membrane effectively filters out fibrils but is vulnerable to penetration by aggregates of 450 ± 60 nm. Together, our findings present an exciting strategy to determine specificity of aggregate toxicity within heterogeneous samples. Our approach to quantitatively measure these toxic aggregates in biological environments opens possibilities to molecular examinations of disease mechanisms under physiological conditions
    corecore