114 research outputs found

    Increased phosphatidylcholine (16:0/16:0) in the folliculus lymphaticus of Warthin tumor

    Get PDF
    Warthin tumor (War-T), the second most common benign salivary gland tumor, consists mainly of neoplastic epithelium and lymphoid stroma. Some proteins and genes thought to be involved in War-T were evaluated by molecular biology and immunology. However, lipids as an important component of many tumor cells have not been well studied in War-T. To elucidate the molecular biology and pathogenesis of War-T, we investigated the visualized distribution of phosphatidylcholines (PCs) by imaging mass spectrometry (IMS). In our IMS analysis of a typical case, 10 signals were significantly different in intensity (p < 0.01) between the War-T and non-tumor (Non-T) regions. Five specific PCs were frequently found in the War-T regions of all of the samples: [PC (16:0/16:0) + K](+) (m/z 772.5), [PC (16:0/20:4) + K](+) (m/z 820.5), [PC (16:0/20:3) + K](+) (m/z 822.5), [PC (18:2/20:4) + K](+) (m/z 844.5), and [PC (18:0/20:5) + K](+) (m/z 846.5). PC (16:0/16:0) was increased specifically in the folliculus lymphaticus of War-T lymphoid stroma, suggesting a different metabolism. Localization of PC (16:0/16:0) might reflect inflammation activity participating in the pathogenesis of War-T. Thus, our IMS analysis revealed the profile of PCs specific to the War-T region. The molecules identified in our study provide important information for further studies of War-T pathogenesis

    Neoadjuvant chemotherapy with docetaxel, nedaplatin, and fluorouracil for resectable esophageal cancer : A phase II study

    Get PDF
    Cisplatin plus 5‐fluorouracil is regarded as standard neoadjuvant chemotherapy for esophageal squamous cell carcinoma (ESCC) in Japan, but the prognosis remains poor. We have previously described how definitive chemoradiotherapy with docetaxel, nedaplatin, and 5‐fluorouracil (DNF) led to a very high response rate and promising survival times. We therefore undertook a phase II trial to evaluate the feasibility and efficacy of neoadjuvant DNF. The study included patients with clinical stage Ib‐III ESCC. Chemotherapy consisted of i.v. docetaxel (30 mg/m2) and nedaplatin (50 mg/m2) on days 1 and 8, and a continuous infusion of 5‐fluorouracil (400 mg/m2/day) on days 1‐5 and 8‐12, every 3 weeks. After three courses of chemotherapy, esophagectomy was carried out. The primary end‐point was the completion rate of the protocol treatment. Twenty‐eight patients were enrolled (cStage Ib/II/III, 2/3/23) and all received at least two cycles of chemotherapy. Twenty‐five patients underwent surgery, all of whom achieved an R0 resection, leading to a completion rate of 89.3%. The overall response rate was 87.0%. A pathological complete response was confirmed in eight (32.0%) cases. Grade 3/4 adverse events included leukopenia (32.1%), neutropenia (39.3%), febrile neutropenia (10.7%), thrombocytopenia (10.7%), and diarrhea (14.3%), but were manageable. Treatment‐related deaths and major surgical complications did not occur. Estimated 2‐year progression‐free and overall survival rates were 70.4% and 77.2%, respectively. Thus, DNF therapy was well tolerated and deemed feasible, with a strong tumor response in a neoadjuvant setting for ESCC. This trial is registered with the University Hospital Medical Information Network (UMIN ID: 000014305)

    Imaging mass spectrometry analysis reveals an altered lipid distribution pattern in the tubular areas of hyper-IgA murine kidneys.

    Get PDF
    Immunoglobulin A (IgA) nephropathy is the most common glomerular disease worldwide. To investigate the pathogenesis of this renal disease, we used animal models that spontaneously develop mesangioproliferative lesions with IgA deposition, which closely resemble the disease in humans. We analyzed the molecular distribution of lipids in hyper-IgA (HIGA) murine kidneys using matrix-assisted laser desorption/ionization-quadrupole ion trap-time of flight (MALDI-QIT-TOF)-based imaging mass spectrometry (IMS), which supplies both spatial distribution of the detected molecules and allows identification of their structures by their molecular mass signature. For both HIGA and control (Balb/c) mice, we found two phosphatidylcholines, PC(16:0/22:6) and PC(18:2/22:6), primarily located in the cortex area and two triacylglycerols, TAG(16:0/18:2/18:1) and TAG(18:1/18:2/18:1), primarily located in the hilum area. However, several other molecules were specifically seen in the HIGA kidneys, particularly in the tubular areas. Two HIGA-specific molecules were O-phosphatidylcholines, PC(O-16:0/22:6) and PC(O-18:1/22:6). Interestingly, common phosphatidylcholines and these HIGA-specific ones possess 22:6 lipid side chains, suggesting that these molecules have a novel, unidentified renal function. Although the primary structure of the HIGA-specific molecules corresponding to m/z 854.6, 856.6, 880.6, and 882.6 remained undetermined, they shared similar fragmentation patterns, indicating their relatedness. We also showed that all the HIGA-specific molecules were derived from urine, and that artificial urinary stagnation-due to unilateral urethral obstruction-caused HIGA-specific distribution of lipids in the tubular area

    Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

    Get PDF
    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful tool that enables the simultaneous detection and identification of biomolecules in analytes. MALDI-imaging mass spectrometry (MALDI-IMS) is a two-dimensional MALDI-mass spectrometric technique used to visualize the spatial distribution of biomolecules without extraction, purification, separation, or labeling of biological samples. MALDI-IMS has revealed the characteristic distribution of several biomolecules, including proteins, peptides, amino acids, lipids, carbohydrates, and nucleotides, in various tissues. The versatility of MALDI-IMS has opened a new frontier in several fields such as medicine, agriculture, biology, pharmacology, and pathology. MALDI-IMS has a great potential for discovery of unknown biomarkers. In this review, we describe the methodology and applications of MALDI-IMS for biological samples

    Investigation by Imaging Mass Spectrometry of Biomarker Candidates for Aging in the Hair Cortex

    Get PDF
    BACKGROUND: Human hair is one of the essential components that define appearance and is a useful source of samples for non-invasive biomonitoring. We describe a novel application of imaging mass spectrometry (IMS) of hair biomolecules for advanced molecular characterization and a better understanding of hair aging. As a cosmetic and biomedical application, molecules whose levels in hair altered with aging were comprehensively investigated. METHODS: Human hair was collected from 15 young (20±5 years old) and 15 older (50±5 years old) volunteers. Matrix-free laser desorption/ionization IMS was used to visualize molecular distribution in the hair sections. Hair-specific ions displaying a significant difference in the intensities between the 2 age groups were extracted as candidate markers for aging. Tissue localization of the molecules and alterations in their levels in the cortex and medulla in the young and old groups were determined. RESULTS: Among the 31 molecules detected specifically in hair sections, 2--one at m/z 153.00, tentatively assigned to be dihydrouracil, and the other at m/z 207.04, identified to be 3,4-dihydroxymandelic acid (DHMA)--exhibited a higher signal intensity in the young group than in the old, and 1 molecule at m/z 164.00, presumed to be O-phosphoethanolamine, displayed a higher intensity in the old group. Among the 3, putative O-phosphoethanolamine showed a cortex-specific distribution. The 3 molecules in cortex presented the same pattern of alteration in signal intensity with aging, whereas those in medulla did not exhibit significant alteration. CONCLUSION: Three molecules whose levels in hair altered with age were extracted. While they are all possible markers for aging, putative dihydrouracil and DHMA, are also suspected to play a role in maintaining hair properties and could be targets for cosmetic supplementation. Mapping of ion localization in hair by IMS is a powerful method to extract biomolecules in specified regions and determine their tissue distribution

    Targeting Notch-1 positive acute leukemia cells by novel fucose-bound liposomes carrying daunorubicin

    Get PDF
    Complete remission by induction therapy in acute myelogenous leukemia (AML) can be achieved due to improvements in supportive and optimized therapy. However, more than 20% of patients will still need to undergo salvage therapy, and most will have a poor prognosis. Determining the specificity of drugs to leukemia cells is important since this will maximize the dose of chemotherapeutic agents that can be administered to AML patients. In turn, this would be expected to lead to reduced drug toxicity and its increased efficacy. We targeted Notch-1 positive AML cells utilizing fucose-bound liposomes, since activation of Notch-1 is required for O-fucosylation. Herein, we report that intravenously injected, L-fucose-bound liposomes containing daunorubicin can be successfully delivered to AML cells that express fucosylated antigens. This resulted in efficient tumor growth inhibition in tumor-bearing mice and decreased proliferation of AML patient-derived leukemia cells. Thus, biological targeting by fucose-bound liposomes that takes advantage of the intrinsic characteristics of AML cells could be a promising new strategy for Notch-1 positive-AML treatment

    Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry

    Get PDF
    Schizophrenia is one of the major psychiatric disorders, and lipids have focused on the important roles in this disorder. In fact, lipids related to various functions in the brain. Previous studies have indicated that phospholipids, particularly ones containing polyunsaturated fatty acyl residues, are deficient in postmortem brains from patients with schizophrenia. However, due to the difficulties in handling human postmortem brains, particularly the large size and complex structures of the human brain, there is little agreement regarding the qualitative and quantitative abnormalities of phospholipids in brains from patients with schizophrenia, particularly if corresponding brain regions are not used. In this study, to overcome these problems, we employed matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS), enabling direct microregion analysis of phospholipids in the postmortem brain of a patient with schizophrenia via brain sections prepared on glass slides. With integration of traditional histochemical examination, we could analyze regions of interest in the brain at the micrometric level. We found abnormal phospholipid distributions within internal brain structures, namely, the frontal cortex and occipital cortex. IMS revealed abnormal distributions of phosphatidylcholine molecular species particularly in the cortical layer of frontal cortex region. In addition, the combined use of liquid chromatography/electrospray ionization tandem mass spectrometry strengthened the capability for identification of numerous lipid molecular species. Our results are expected to further elucidate various metabolic processes in the neural system

    質量分析イメージングの創薬研究への展開

    No full text

    A mouse model of short-term, diet-induced fatty liver with abnormal cardiolipin remodeling via downregulated Tafazzin gene expression

    Get PDF
    Background Cardiolipin (CL) helps maintain mitochondrial structure and function. Here we investigated whether a high carbohydrate diet (HCD) fed to mice for a short period (5 days) could modulate the CL level, including that of monolysoCL (MLCL) in the liver. Results Total CL in the HCD group was 22% lower than that in the normal chow diet (NCD) group (P < 0.05). The CL72:8 level strikingly decreased by 93% (P < 0.0001), whereas total nascent CLs (CLs other than CL72:8) increased (P < 0.01) in the HCD group. The total MLCL in the HCD group increased by 2.4-fold compared with that in the NCD group (P < 0.05). Tafazzin expression in the HCD group was significantly downregulated compared with that in the NCD group (P < 0.05). A strong positive correlation between nascent CL and total MLCL (r = 0.955, P < 0.0001), and a negative correlation between MLCL and Tafazzin expression (r = -0.593, P = 0.0883) were observed. Conclusion A HCD modulated the fatty acid composition of CL and MLCL via Tafazzin in the liver, which could lead to mitochondrial dysfunction. This model may be useful for elucidating the relationship between fatty liver and mitochondrial dysfunction. (c) 2021 Society of Chemical Industr

    Evaluation of Fruit Anthocyanin Composition by LC/MS in Interspecific Hybrids Between Haskap (Lonicera caerulea subsp. edulis (Turcz. ex. Herder) Hulten) and Miyama-uguisukagura (Lonicera gracilipes Miq.)

    No full text
    Haskap (Lonicera caerulea subsp. edulis) is a deciduous shrub that produces blue-black edible berries with a sour-sweet taste. By expanding fruit color variation, the value of agricultural products is enhanced. Interspecific hybrids were obtained from crossings between Haskap and red-fruit bearing Miyamauguisukagura (Lonicera gracilipes). The fruit color of the interspecific hybrids obtained was red-purple. Fruit color in Haskap is mainly affected by the concentration of anthocyanin. However, there are no reports on the chemical determinants of fruit color in interspecific hybrids between Haskap and Miyama-uguisukagura. We evaluated anthocyanin components in these hybrids and their parents using liquid chromatography/tandem mass spectrometry, and revealed the presence of five different kinds of anthocyanins. The major anthocyanin in interspecific hybrids and Haskap was cyanidin 3-glucoside, while in Miyama-uguisukagura, it was cyanidin 3,5-diglucoside. Some genotypes among interspecific hybrids showed higher concentrations of cyanidin 3,5-diglucoside and peonidin 3,5-diglucoside, compared with their parents. The genotypes of interspecific hybrids and the parents were evaluated by principal component analysis of anthocyanin concentration. Our study contributes to the identification of anthocyanin composition in fruits of interspecific hybrids and in expanding fruit color variation when breeding new varieties
    corecore