919 research outputs found

    Sex Differences in Mood and Anxiety-Related Outcomes in Response to Adolescent Nicotine Exposure

    Get PDF
    Nicotine dependence is causally linked to increased risk of mood/anxiety disorders in later life. Females are reported to experience a higher prevalence of anxiety/depressive disorders and challenges in smoking cessation therapies, suggesting a potential sex-specific response to nicotine exposure and mood/anxiety disorder risk. However, pre-clinical evidence of sex-specific responses to adolescent nicotine exposure is unclear. Thus, to determine any sex differences in anxiety/depressive-related outcomes, adolescent male and female Sprague Dawley rats received nicotine (0.4 mg/kg; 3x daily) or saline injections for 10 consecutive days, followed by behavioural testing, in-vivo electrophysiology and Western Blot analyses. Our results revealed that adolescent nicotine exposure caused long-lasting anxiety/depressive-like behaviours, disrupted neuronal activity patterns and molecular signaling pathway targets in nicotine-treated male rats, but no significant effects in female cohorts, suggesting possible compensatory actions related to estrogen/progesterone signaling pathways in female. These novel results serve as a foundation for future investigations examining how adolescent nicotine exposure may differentially impact the male vs. female brains

    Confirmation of Itersonilia perplexans infecting pyrethrum (Tanacetum cinerariifolium) in Australia

    Get PDF
    Pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) is grown to extract pyrethrins which are active ingredients for insecticides (Greenhill 2007). The Australian pyrethrum industry supplies over 50% of the world market. Surveys of Tasmanian crops in spring 2013, detected the presence of a fungus putatively identified as Itersonilia perplexans Derx. on foliage in 54 of 86 surveyed fields (Hay et al. 2015). This fungus was associated with necrotic leaf tips often spreading to encompass whole leaves. However, pathogenicity to pyrethrum was not confirmed. To isolate, tissue was excised from foliar lesions, surface sterilised using 0.4% NaClO, placed onto 2% water agar and incubated at 20°C for 5 days. Colonies were pure-cultured by hyphal-tip transfer onto potato-dextrose agar. Eleven isolates were cultured onto yeast mold agar (YMA) for 14 days at 15°C in the dark (Horita and Yasuoka 2002). Colonies were slow growing (1.9 to 2.3 mm/day) white to buff on both surfaces, with a darker center visible on lower surfaces. Mycelia were straight and hyaline with clamp connections at the septa. Squares transferred from the edge of YMA colonies onto microscope slides produced ballistoconidia that were aseptate, granular and lunate, kidney or lemon-shaped after 24 h. Ballistoconidia lengths and widths (n = 50/isolate) ranged from 14.6 to 20.4 µm and 10.0 to 13.6 µm. Chlamydospores were not observed. These observations were consistent with descriptions of I. perplexans (Koike and Tjosvold 2001; Liu et al. 2015). All 11 isolates were sequenced across the internal transcribed spacer (ITS) region of rDNA (ITS; primers V9G/ITS4; de Hoog and van den Ende 1998; White et al. 1990), and large (LSU; primers LROR/LR7; Rehner and Samuels 1995), and small (SSU; NS1/NS4; White et al. 1990) subunits of rDNA (Genbank accession nos. KU563626 to KU563658). The ITS (673 bp), SSU (1,047 bp) and LSU (1,318 bp) differed by 3, 1 and 0 bp, respectively, across isolates. Maximum parsimony and maximum likelihood analyses of a concatenated 3 loci alignment with Cystofilobasidiales representatives (Liu et al. 2015) placed all isolates and the I. perplexans ex-neotype strain CBS 363.85 within a single monophyletic clade with 100% bootstrap support. Two representative isolates are stored at the Plant Pathology Herbarium (accession nos. BRIP 57986 and 57987). Leaves of 46-day-old pyrethrum plants (n = 45), generated from surface sterilised seed, were inoculated with a 1.5 × 105 ballistoconidia/ml suspension (equal mix of eight isolates) and maintained between 10 and 22°C under a 12-h photoperiod for 14 days. Brown necrotic leaf tips, consistent with reported field symptoms were observed on 71% of plants and I. perplexans was recovered from 69% of symptomatic plants. For flower inoculations, pyrethrum plants were removed from fields as vegetative plants in spring and maintained in a greenhouse set at 20:14°C and 14:10 h day:night. Open flowers (10 per plant) were dipped into a 1.2 × 104 ballistoconidia/ml suspension mix of three isolates. Brown withered ray florets were observed on 10/12 plants 18 days post-inoculation, matching those described in petal blight of chrysanthemum (McRitchie et al. 1973). I. perplexans was re-isolated from 11/12 inoculated plants and 1 control plant (of 12) which exhibited the same symptoms. In both experiments, I. perplexans was identified based on its distinctive morphology. This confirms the pathogenicity of I. perplexans to both pyrethrum leaves and flowers

    Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Get PDF
    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies

    Electrophoresis : what does a century old technology hold for the future of separation science?

    Get PDF
    Electrophoretic separation was first demonstrated in the year of 1807 and has since been a staple tool used by biologists and chemists for more than a century since its inception. From the initial crude paper electrophoresis system to today’s modern automated electrophoresis system, the development of electrophoresis systems have been driven by the advancement of technology such as miniaturization, precision engineering, biochemistry, electrical and electronics. These advancements were introduced to meet the requirement for faster and better resolution of results. This paper reviews the evolution of the electrophoresis technology over one century and provides an insight into the possible future development of electrophoresis.Various aspects of the electrophoresis system such as the performances, designs, usages, separation phases, and biochemistry were analyzed. The technological advancements for this field have been evidenced by the increasing complexity of the electrophoresis system. A peek into the possible future for the world of electrophoresis has been provided by drawing insights from the missing links of current technologies. It is both exciting and equally perplexing to explore the promises that this seeming simple separation technology holds for the future

    Innovative Technologies for Global Space Exploration

    Get PDF
    Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them

    X-ray computed tomography (XCT) and chemical analysis (EDX and XRF) used in conjunction for cultural conservation: the case of the earliest scientifically described dinosaur Megalosaurus bucklandii

    Get PDF
    This paper demonstrates the combined use of X-ray computed tomography (XCT), energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) to evaluate the conservational history of the dentary (lower jaw) of Megalosaurus bucklandii Mantell, 1827, the first scientifically described dinosaur. Previous analysis using XCT revealed that the specimen had undergone at least two phases of repair using two different kinds of plaster, although their composition remained undetermined. Additional chemical analysis using EDX and XRF has allowed the determination of the composition of these unidentified plasters, revealing that they are of similar composition, composed dominantly of ‘plaster of Paris’ mixed with quartz sand and calcite, potentially from the matrix material of the Stonesfield Slate, with the trace presence of chlorine. One of the plasters unusually contains the pigment minium (naturally occurring lead tetroxide; Pb22+Pb4+O4) whilst the other seems to have an additional coating of barium hydroxide (Ba(OH)2), indicating that these likely represent two separate stages of repair. The potential of this combined approach for evaluating problematic museum objects for conservation is further discussed as is its usage in cultural heritage today

    Resilience of English vowel perception across regional accent variation

    Get PDF
    In two categorization experiments using phonotactically legal nonce words, we tested Australian English listeners’ perception of all vowels in their own accent as well as in four less familiar regional varieties of English which differ in how their vowel realizations diverge from Australian English: London, Yorkshire, Newcastle (UK), and New Zealand. Results of Experiment 1 indicated that amongst the vowel differences described in sociophonetic studies and attested in our stimulus materials, only a small subset caused greater perceptual difficulty for Australian listeners than for the corresponding Australian English vowels. We discuss this perceptual tolerance for vowel variation in terms of how perceptual assimilation of phonetic details into abstract vowel categories may contribute to recognizing words across variable pronunciations. Experiment 2 determined whether short-term multi-talker exposure would facilitate accent adaptation, particularly for those vowels that proved more difficult to categorize in Experiment 1. For each accent separately, participants listened to a pre-test passage in the nonce word accent but told by novel talkers before completing the same task as in Experiment 1. In contrast to previous studies showing rapid adaptation to talker-specific variation, our listeners’ subsequent vowel assimilations were largely unaffected by exposure to other talkers’ accent-specific variation

    Utilizing x-ray computed tomography for heritage conservation : the case of megalosaurus bucklandii

    Get PDF
    Of key importance to any cultural institution is the practice of conservation, the method by which specimens at risk of severe degradation or destruction are treated to ensure that they survive into the future. However, surface inspection is often insufficient to properly inform conservators of the best treatment approach, and where there is little to no record of the conservational history of an object it can be difficult to identify exactly what form of conservation has been undertaken. X-Ray Computed Tomography (XCT) grants a way to overcome these issues by allowing conservators to non-destructively investigate the subsurface details of an artefact to provide essential information on condition of a specimen. Here, the potential of this approach is demonstrated using the first XCT scans of the iconic dentary of Megalosaurus bucklandii Mantell, 1827 (1); the first dinosaur ever named and described scientifically. XCT analysis reveals that the degree of repair is less extensive than previously thought and also elucidates two different material types, M1 and M2, thought to be representative of at least two phases of repair. Finally the potential of this approach is further explored, highlighting its importance for conservation practice, identifying forgeries and hoaxes in addition to potential applications in public engagement

    Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    Get PDF
    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities, developing maturation plans and roadmaps for the identified performance gaps, specifying the interfaces between the various capabilities, and ensuring that the capabilities mature and integrate to enable future pioneering missions. By managing system development through the SMTs instead of traditional NASA programs and projects, the Agency is shifting from mission-driven development to a more flexible, capability-driven development. The process NASA uses to establish, integrate, prioritize, and manage the SMTs and associated capabilities is iterative. NASA relies on the Human Exploration and Operation Mission Directorate's SMT Integration Team within Advanced Exploration Systems to coordinate and facilitate the SMT process. The SMT Integration team conducts regular reviews and coordination meetings among the SMTs and has developed a number of tools to help the Agency implement capability driven processes. The SMT Integration team is uniquely positioned to help the Agency coordinate the SMTs and other processes that are making the capability-driven approach a reality. This paper will introduce the SMTs and the 12 key capabilities they represent. The role of the SMTs will be discussed with respect to Agency-wide processes to shift from mission-focused exploration to a capability-driven pioneering approach. Specific examples will be given to highlight systems development and testing within the SMTs. These examples will also show how NASA is using current investments in the International Space Station and future investments to develop and demonstrate capabilities. The paper will conclude by describing next steps and a process for soliciting feedback from the space exploration community to refine NASA's process for developing common exploration capabilities

    Revealing perceptual structure through input variation: cross-accent categorization of vowels in five accents of English

    Get PDF
    This paper characterizes the perceptual structure of vowel systems in five regional accents of English, from Australia (A), New Zealand (Z), London (L), Yorkshire (Y), and Newcastle upon Tyne (N), on the basis of “whole system” vowel categorization experiments. We established patterns of within-accent vowel confusions, and then explored cross-accent perception, assessing how listeners from one accent background categorize vowels from another. Our experimental task required mapping continuous phonetic dimensions to perceptual categories in the absence of phonotactic and lexical cues to vowel identity and socio-indexical information about the talker. Our results show that, without these sources of information, there is uncertainty in vowel categorization, even for native accent vowels, and that this degree of uncertainty increases for unfamiliar accents. The patterns of cross-accent perception largely reflect the accent-specific perceptual structure of the listener, as opposed to adaptations to the stimulus accents. This finding contrasts with the type of active talker adaptation found with tasks offering lexical information about vowel identity and indexical information about the talker
    corecore