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Abstract 

Nicotine dependence is causally linked to increased risk of mood/anxiety disorders in 

later life. Females are reported to experience a higher prevalence of anxiety/depressive 

disorders and challenges in smoking cessation therapies, suggesting a potential sex-specific 

response to nicotine exposure and mood/anxiety disorder risk. However, pre-clinical 

evidence of sex-specific responses to adolescent nicotine exposure is unclear. Thus, to 

determine any sex differences in anxiety/depressive-related outcomes, adolescent male and 

female Sprague Dawley rats received nicotine (0.4 mg/kg; 3x daily) or saline injections for 

10 consecutive days, followed by behavioural testing, in-vivo electrophysiology and Western 

Blot analyses. Our results revealed that adolescent nicotine exposure caused long-lasting 

anxiety/depressive-like behaviours, disrupted neuronal activity patterns and molecular 

signaling pathway targets in nicotine-treated male rats, but no significant effects in female 

cohorts, suggesting possible compensatory actions related to estrogen/progesterone signaling 

pathways in female. These novel results serve as a foundation for future investigations 

examining how adolescent nicotine exposure may differentially impact the male vs. female 

brains. 

Keywords 

Nicotine, Addiction, Adolescence, Neurodevelopment, Anxiety Disorders, Depressive 

Disorders, Sex Differences, Dopamine, Glutamate, GABA, BDNF, Prefrontal Cortex, 

Ventral Tegmental Area, Nucleus Accumbens, Estrogen, Sensitivity 
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Summary for Lay Audience 

Smoking-related diseases remain the highest cause of preventable mortality 

worldwide. In recent years, the increase in teen vaping trends is particularly concerning since 

adolescence represents a critical stage of brain development. The main psychoactive 

component in these products, nicotine, can affect the brain’s addiction pathways by changing 

different neurotransmitter levels, such as glutamate, GABA and dopamine. Many animal and 

human studies have demonstrated nicotine addiction could cause anxiety and depressive 

disorders. In human studies, females have a higher prevalence of anxiety and depression 

symptoms. They also experience more difficulty in quitting nicotine products and 

rehabilitation with nicotine replacement therapies, which suggests a potential sex-specific 

sensitivity to nicotine. However, most animal studies only used male animals for 

experiments. Sex-specific responses to nicotine exposure are therefore currently unclear. 

Hence, the objective of this thesis is to determine any sex differences in mood and anxiety-

related outcomes following nicotine exposure during adolescence. Adolescent male and 

female Sprague Dawley rats received either nicotine or saline injections, 3 times daily for 10 

consecutive days. Once animals reached adulthood, they performed a series of mood and 

anxiety-related behavioural tests, such as the elevated plus maze, forced swim test and novel 

object recognition task. Next, either in-vivo electrophysiology or Western Blot was 

conducted to investigate neuron firing patterns and changes in protein level. Our results 

revealed that nicotine-treated male rats displayed anxiety and depressive-like behaviours and 

cognitive deficits. Alterations in glutamate and dopamine signaling as well as brain 

oscillation waves were observed in this same group. Furthermore, there were changes in 

expression levels of anxiety and depressive-related molecular targets. On the contrary, the 

nicotine-treated female rats showed no significant changes in behaviours or neuronal activity 

states, but displayed opposite trends to the male cohorts in some molecular markers. This 

indicates possible interactions between estrogen/progesterone and nicotine exposure in the 

female body. To conclude, these results are consistent with reports suggesting female is less 

sensitive to the pharmacological effects of nicotine. The current project could also serve as a 

starting point for future studies to investigate how the adolescent female brain is protected 

against anxiety and depressive disorders following prolonged nicotine exposure. 
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Chapter 1  

1 Introduction 

The nature of tobacco dependence has changed drastically over the decades, both 

in terms of delivery methods and relative content of nicotine, the primary psychoactive 

compound underlying its addictive liability. Smoking-related diseases have been one of 

the top global causes for preventable deaths associated with various diseases, such as 

cancer, respiratory diseases and cardiovascular problems (West, 2017). Besides its 

detrimental outcomes in the periphery, nicotine also impacts the central nervous system 

(CNS) by altering different neurotransmitter dynamics, including dopamine (DA), γ-

aminobutyric acid (GABA), glutamate, serotonin, and acetylcholine (Le Houezec, 2003; 

Laviolette, 2021) and their associated molecular signalling pathways. Clinical studies 

have found that nicotine dependence is closely associated with a variety of psychiatric 

disorders, such as schizophrenia, anxiety disorders and depression (Martínez-Ortegaa et 

al., 2017; Boden et al., 2010; Moran et al., 2013; Sagud et al., 2019). However, such 

correlational studies are limited in terms of their ability to reveal underlying causal 

mechanisms. Accordingly, the use of controlled, pre-clinical research methods that allow 

for precise temporal and drug exposure controls may allow us to better understand the 

pathophysiological effects of nicotine on the vulnerable developing brain and reveal the 

underlying neuropharmacological substrates that increase risk for neuropsychiatric 

disorders.   

Adolescence is a developmental period where smoking initiation usually occurs 

(Chambers et al. 2003; Crews et al. 2007; National Center for Chronic Disease 

Prevention, 2012). Despite overall reductions in tobacco use in the general population 

due to increased public awareness of tobacco’s harmful effects, there has been a rise in 

electronic cigarette (e-cigarette) product consumption by adolescents, which were 

originally marketed as a nicotine titration tool to cease tobacco smoking (Jones and 

Salzman, 2020; Yoong et al., 2018). This relative increase in teen vaping, termed the new 

smoking epidemic, is particularly alarming since the adolescent brain is still premature 

and vulnerable to extrinsic drugs of abuse. Decades of pre-clinical and human studies 
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have documented the acute and chronic effects of nicotine dependence on the 

mesocorticolimbic circuitry, which involves brain regions such as the prefrontal cortex 

(PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). Influences of 

nicotine on these neural executive and emotional regulation pathways as well as their 

underlying molecular signaling cascades, have been shown to be associated with various 

psychiatric disorders (Boden et al., 2010; Moran et al., 2013; Jobson et al., 2019; Hudson 

et al., 2021). However, the majority of previous pre-clinical research heavily utilized 

male animals and thus focused exclusively on the developing male brain. Thus, the 

neurophysiological responses by the female brain to nicotine exposure remain unclear. 

This represents a serious gap in our translational understanding of neurodevelopmental 

nicotine impacts. For example, in clinical populations, female patients often experience 

challenges in quitting nicotine products and a higher prevalence of mood and anxiety 

disorders (McLean et al., 2011; Torres & O’Dell, 2016; Cepeda-Benito et al., 2004). 

Based on these findings, the current project aimed to explore potential sex differences in 

mood and anxiety-related outcomes using a previously established rodent model of 

adolescent nicotine exposure with male and female Sprague-Dawley rat cohorts (Jobson 

et al., 2019), with the goal of identifying potential divergent mechanisms underlying the 

differential sensitivity of the male vs. female brains during adolescent nicotine exposure. 

1.1 Smoking Prevalence and the Rise of E-Cigarette 
Vaping 

Although the rate of tobacco dependence has been steadily decreasing in recent 

years, tobacco-related diseases remain one of the top global causes of preventable deaths 

(Yoong et al., 2018; National Center for Chronic Disease Prevention, 2014). In the 

United States, an estimated 30.8 million (~12.5% of the population) adults aged over 18 

years have reported currently smoking cigarettes, and more than 16 million Americans 

are diagnosed with smoking-related diseases (National Center for Chronic Disease 

Prevention, 2014; Cornelius et al., 2022); in Canada, the prevalence of cigarette smoking 

is approximately 3.2 million people (~10% of the population), where a higher percentage 

of men (~12%) smoke cigarettes than women (~10%) (Health Canada, 2020). Notably, 

trends in nicotine consumption among adolescents continue to raise alarm. Smoking 
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initiation of lifelong smokers typically begins during the stage of adolescence, despite the 

widespread imposition of age-restrictions on the purchase of tobacco products 

(Edvardsson et al., 2009; Crews et al. 2007). Over the past decade, the development of e-

cigarettes has gained considerable popularity among adolescents – in the United States, 

more than 2.5 million middle and high school students have used e-cigarettes in the past 

30 days, where ~380,000 middle school students and ~2.14 million high school students 

have reported current use of vape products (Cooper et al., 2022); in Canada, ~5.2 million 

Canadians (aged 15 years and older) have reported using e-cigarettes, where ~291,000 

youths (aged 15-19) and ~312,000 young adults (aged 20-24) have consumed vape 

products in the past 30 days (Health Canada, 2020).  

E-cigarettes were initially developed and marketed as a novel nicotine delivery 

tool to assist in the reduction of nicotine dependence (National Center for Chronic 

Disease Prevention, 2016), since it could replicate most sensory cues from cigarette 

smoking and slowly titrate nicotine exposure level over time (Siu et al., 2015). In 

addition to the addictive properties of nicotine in vaping products, the wide variety of 

flavours present is also believed to be a major driver of popular use among adolescents, 

since it provides users an extended range of appetitive and sensory experiences along 

with nicotine consumption, relative to traditional cigarette formats (Hefner et al., 2017). 

The availability of flavours ranges from candy-floss, chocolate, vanilla, to mint, and they 

can mask the harsh taste of regular tobacco products (Sapru et al., 2020; Pepper et al., 

2016; Ambrose et al., 2015). Compared to traditional cigarettes, nicotine concentrations 

in e-cigarettes can also be controlled manually, and certain carcinogens existed in 

tobacco could be avoided (Fernández et al., 2015; Goniewicz et al., 2014). Nevertheless, 

this relative rise in teen vaping trends, despite the overall drop in use of traditional 

smoking formats, has been termed the new smoking epidemic (Jones and Salzman, 2020; 

Yoong et al., 2018).  

From a neuropsychiatric perspective, the increase in teen vaping is particularly 

concerning since adolescence represents a critical stage of neurodevelopment, where 

complex changes occur at the molecular, synaptic and network level. Considerable 

evidence has demonstrated that the adolescent brain is more susceptible to the 
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dependence-producing effects of tobacco, given that adolescents may develop 

dependence at substantially lower concentrations of nicotine and over shorter periods of 

time (Kandel and Chen, 2000; O’Loughlin et al., 2003). 

1.2 Neuropharmacology of Nicotine and the 
Mesocorticolimbic System 

Nicotine is the main alkaloid found in tobacco and is believed to be responsible 

for the addictive potential of these products (Le Houezec, 2003; Benowitz, 2009). Upon 

smoking, nicotine is carried into the lungs along with smoke particles and absorbed 

rapidly into the pulmonary venous circulation, where it then enters the arterial circulation 

and reaches the brain within 20 seconds of inhalation. Because of its lipophilic nature, 

nicotine can diffuse readily into brain tissues and bind to nicotinic acetylcholine receptors 

(nAChRs) widely expressed in the CNS (Figure 1A). nAChRs are ligand-gated ion 

channels located on cell bodies, nerve terminals, and axons, where the binding of nicotine 

results in the opening of the channel and influx of cations, such as sodium (Na+) and 

calcium (Ca2+) ions, from extracellular space to the intracellular space of neurons (Figure 

1B, 1C). As a result of this action, membrane depolarization occurs and it leads to the 

release of neurotransmitters (Figure 1C, 1D) (Le Houezec, 2003; Benowitz, 2009). Past 

research has demonstrated that nicotine can modulate different neurotransmitter 

dynamics through presynaptic nAChRs, including acetylcholine, DA, GABA, glutamate, 

and serotonin (Le Houezec, 2003; Laviolette, 2021; Hudson et al., 2021; Jobson et al., 

2019). 

nAChRs are pentameric in nature and consist of either homomeric (7-10) or 

heteromeric (2-6, 2-4) subunits. The wide range of subunit combinations contribute 

to a diverse receptor pharmacology in terms of agonist affinity, desensitization, and 

downstream signaling cascades (Gotti et al., 2006; Dani & Bertrand, 2007). Throughout 

the CNS, each nAChR subunit exhibits different expression patterns and functions, where 

the two most common subtypes are the 42 nAChR and the homomeric 7 nAChR 

(Yuan et al., 2015; Perry et al., 2002; Gotti et al., 2006; Dani & Bertrand, 2007). 42 

nAChRs are high-affinity receptors that desensitize at low nicotine concentrations 
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(Fenster et al., 1999; Dani & Bertrand, 2007). On the other hand, homomeric 7 nAChRs 

have low affinity for nicotine and desensitize only at high nicotine concentrations (Dani 

& Bertrand, 2007).  

In the CNS, nAChRs are widely distributed in brain regions involved in the 

addiction pathways, also known as the mesocorticolimbic system. These areas include the 

PFC, NAc, VTA, hippocampus (Hipp), basolateral amygdala (BLA), and contain 

interconnected circuitries providing multi-directional control across the regions (Figure 

2) (Yang et al., 2018; Yuan et al., 2015; Koob & Volkow, 2016; Arnsten, 2009).  Overall, 

the mesocorticolimbic system plays a critical role in many addictive behaviours, such as 

risk-taking behaviours, drug withdrawal symptoms, positive reinforcement and craving 

(Cheron & Kerchove d’Exaerde., 2021; Koob & Volkow, 2016). For instance, the PFC is 

responsible for decision making and executive functions, where it processes information 

from the NAc, BLA and Hipp, evaluates probable outcomes of each action, as well as 

regulate emotions (Alexander & Brown, 2011; Arnsten, 2009). Activities of GABAergic 

and glutamatergic neurons in the PFC are also thought to be associated with impulse 

control and risk-taking behaviours (Yuan et al., 2015; Benes, 2015). With regards to the 

NAc and VTA, DAergic neurons originate from the VTA and project to the NAc, 

forming the mesolimbic pathway. It has been well established that DA activity in this 

circuitry underlies the acute rewarding and aversive effects of different drugs of abuse 

and goal-directed behaviours (Adinoff, 2004). For example, in several pre-clinical studies 

using a drug self-administration protocol, the amount of self-administered cocaine was 

positively correlated with the amount of extracellular DA released in the NAc, whereas 

the administration of DA receptor antagonists attenuated self-administration of cocaine 

(Pettit & Justice, 1991; Bergman et al., 1990). However, previous research has also 

revealed that DA transmission in the mesolimbic pathway can mediate the acute aversive 

stimulus properties of both systemic and intra-VTA nicotine (Grieder et al., 2012; 

Laviolette and van der Kooy, 2003; Laviolette et al., 2008). Indeed, DA transmission in 

the mesolimbic pathway has been shown to only mediate the appetitive, rewarding effects 

of nicotine following chronic exposure to nicotine, which sensitizes VTA DA neurons to 

the acute effects of nicotine (Tan et al., 2009). 
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Given the broad expression profile and the role of nAChRs on neuronal activity, 

nicotine exposure can affect various neurotransmitter levels in the mesocorticolimbic 

system. Previous studies have shown that 42 nAChRs are involved in spiking activity 

of DAergic neurons in the VTA (Livingstone et al., 2009; Zhao-Shea et al., 2011), and 

7 nAChRs could modulate DA release in the PFC and NAc, as well as glutamate 

signaling (Mameli-Engvall et al., 2006, Livingstone et al., 2009; Mansvelder et al., 2009). 

Besides addiction, the mesocorticolimbic system also plays a pivotal role in mood and 

anxiety-related behaviours. The relationship between nicotine dependence and 

mood/anxiety disorders will be discussed further in subsequent sections.  
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Figure 1. Neuropharmacodynamics of nicotine in the central nervous system. Green: 

calcium ion (Ca2+); Red: sodium ion (Na+); Yellow: nicotine; Purple: glutamate. (A) 

Nicotine binds to nAChRs and the ion channel is open. (B, C) Opening of ion channel 

allows the influx of Ca2+ and Na+ ions from extracellular space to the intracellular space 

of neurons. (C, D) Entry of Ca2+ and Na+ ions into neurons leads to membrane 

depolarization and release of different neurotransmitters (e.g., glutamate). Created with 

BioRender.com. 
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Figure 2. Neurocircuitries within the mesocorticolimbic system. Brain regions that are 

affected in addiction and mood/anxiety disorders, including the prefrontal cortex (PFC), 

nucleus accumbens (NAc), ventral tegmental area (VTA), basolateral amygdala (BLA), 

hippocampus (Hipp). Multi-directional connections exist between these areas to provide 

regulation over local activity. The mesocorticolimbic system is involved in impulse 

control, decision making, reward learning, motivation, cognitive function, memory 

formation, emotional regulation, and fear processing. Created with BioRender.com. 
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1.3 Vulnerability of the Adolescent Brain 

Puberty refers to the process of sexual maturation (i.e., reactivation of 

hypothalamic–pituitary–gonadal axis and capability of reproduction); adolescence is a 

transition period from childhood to adulthood that generally spans from the age of 10-24 

years, which is accompanied by increased risk-taking behaviours, peer associations, 

sensitivity to social cues, and maturing cognitive control (Arain et al., 2013; Spear, 2000; 

Spear, 2013). Adolescence represents a unique period of brain development where 

intricate neurocircuitries are still vulnerable to fluctuations of sex hormones and external 

environmental factors, and complex structural and functional reorganizations of the brain 

are occurring simultaneously (Yuan et al., 2015; Arain et al., 2013; Spear, 2000). First, 

white matter connectivity and network structures in the male and female brains are 

heavily influenced by hormonal changes in the body. For instance, studies have reported 

that testosterone levels are positively correlated with whole brain white matter volume in 

male but not females, and androgens are also capable of modulating axonal growth 

patterns (Perrin et al., 2008; Fargo et al., 2008). In addition, during the early pubertal 

phase, increased luteinizing hormone (LH) levels are associated with increased overall 

white matter volume and regional white matter density, specifically in prefrontal and 

temporal brain regions (Peper et al., 2008). It has also been suggested that estrogen and 

progesterone may enhance both cortical-cortical and subcortical-cortical (e.g., amygdala 

and PFC) functional connectivity, where testosterone may decrease subcortical-cortical 

but increase subcortical-subcortical functional connectivity (Peper et al., 2011; Arain et 

al., 2013), implicating the role of sex hormones on neurodevelopment during 

adolescence.  

Synaptic pruning also occurs in this developmental period, which involves the 

refinement of dendritic branching and synaptic connections to ensure appropriate 

connectivity is established for adulthood, along with the loss of redundant synapses (i.e., 

those failed to make connections) (Spear, 2013; Brenhouse & Andersen, 2011; Arain et 

al., 2013). During adolescence, there is significant synaptic pruning in the human frontal 

cortex, where ~40% of synapses are lost between the age of 7-15 years. In particular, 

synaptophysin levels, a critical synaptic marker, in the dorsolateral PFC (DLPFC) rises 
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slowly between birth and 5 years of age, plateaus around the age of 10, and then falls 

back to adult levels by the age of 16 (Glantz et al., 2007).  

Furthermore, in the adolescent brain, major changes in network connectivity are 

not homogenous temporally, but rather regional-based, with phylogenetically ancient 

brain regions (e.g., limbic system: amygdala, NAc, VTA) maturing earlier than frontal 

cortical regions (e.g., PFC), in a caudal to rostral fashion (Gogtay et al. 2004; Arain et al., 

2013). It has been suggested that completion of frontal region development in late 

adolescence/early adulthood can result in a “top-down” control system over subcortical 

emotional/reward-focused systems (e.g., VTA, NAc, amygdala) (Casey et al., 2008). 

Hence, during adolescence, the differential maturation timepoints of subcortical areas and 

cortical executive/impulse control regions (e.g., PFC) are thought to underlie risk-taking 

behaviours in adolescents (Casey et al. 2011; Smith, 2013; Benes, 2015).  

Within the frontal cortex, GABAergic neurons play a critical role in 

synchronizing cortical activity through feedforward and feedback mechanisms that 

regulate activities of pyramidal/glutamatergic neurons (Di Cristo et al., 2007; 

Constantinidis et al., 2002). By early adolescence, glutamatergic (excitatory) signaling is 

already established in the PFC, where GABA (inhibitory) neurotransmission is only 

premature at this stage (Arain et al., 2013; Li & Xu, 2008). As a result, this 

excitatory/inhibitory (E/I) imbalance in the PFC, are insufficient to provide tight 

regulation of frontal and sub-cortical cognitive/emotional regulation centers, potentially 

leading to the lack of impulse control and increased drug-seeking behaviours in teenagers 

(e.g., alcohol, tobacco, cannabis) (Chambers et al. 2003; Crews et al. 2007). 

Neuroimaging studies have also revealed that the PFC of adolescents is less activated 

than that of adults in decision-making tasks, and adolescents rely more on emotional 

processing/regulation areas when interpreting social cues (Arain et al., 2013). Taken 

together, ongoing development and structural reorganizations in the adolescent brain can 

result in impulsive and risky behaviours such as experiencing different drugs of abuse. 

Considering the impacts of nicotine on the CNS, nicotine exposure and subsequent 

chronic use by adolescents is very likely to disrupt such delicate and complex 

neurodevelopmental processes in the brain, and alter a variety of neurotransmitter 
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dynamics within the mesocorticolimbic system. This could lead to earlier onsets of 

cognitive deficits and mood/anxiety disorders in adulthood, given the role of the 

mesocorticolimbic system in higher-order cognitive function and emotional regulation.  

1.4 Diagnosis of Anxiety and Depressive Disorders 

Fear refers to the conscious feelings elicited by threat or imminent danger, 

whereas anxiety is the anticipation of real or perceived future threats or dangers (Crasket 

et al., 2011; Penninx et al., 2021). Both fear and anxiety are adaptive in nature and highly 

conserved across species, since they facilitate avoidance of danger and survival of the 

organism (Beesdo et al., 2009; Penninx et al., 2021; Steimer, 2002; Adolphs, 2013). 

However, it requires clinical attention when fear and anxiety become excessive and 

persistent, which interferes with normal functioning (e.g., social interactions, workplace 

productivity) (Beesdo et al., 2009; Penninx et al., 2021; DeMartini et al., 2019). Anxiety 

disorders can be classified into many types of disorders including specific phobias, panic 

disorder, social anxiety disorder, generalized anxiety disorder and other sub-variants. The 

diagnosis of anxiety disorders is based on two main classification schemes: the fifth 

edition of Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and the 11th 

edition of International Classification of Diseases (ICD-11). For example, common 

symptoms of generalized anxiety disorders include uncontrollable worry and fear of daily 

activities, fatigue, sleeplessness, difficulty concentrating; whereas patients with social 

anxiety disorder exhibit excessive and unreasonable fear or anxiety of negative 

judgements by others, avoidance of social interactions and situations (Penninx et al., 

2021). Distinctions between anxiety disorders requires clinical judgement of duration, 

severity, and degree of distress and impairment. Screening questionnaires such as the 

Hamilton Anxiety Scale and the Beck Anxiety Inventory are commonly used in 

diagnostic process as well. Risk factors for anxiety disorders include interactions between 

genetics and environmental factors, as well as epigenetic modulations. Anxiety disorders 

are also highly co-morbid with other psychiatric disorders, such as major depressive 

disorder, bipolar disorder, and obsessive-compulsive disorder. (Penninx et al., 2021; 

Thibaut, 2017). Globally, anxiety disorders account for 3.3% of global burden of disease 

and impose heavy economic burden on societies along with depression (~USD $1 trillion 
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per year) (Penninx et al., 2021; The Lancet Global Health, 2020). The life-time 

prevalence of anxiety disorders in the United States is approximately 34% for adults, 

whereas in females this prevalence is ~1-2.5 times greater (Szuhany & Simon, 2022; 

Penninx et al., 2021). Brain regions involved in fear and anxiety processing include the 

amygdala, hippocampus, stria terminalis and its bed nucleus, medial PFC (mPFC) and 

insula, where these circuitry components interact together and generate adaptive 

defensive responses depending on the nature of threats (Penninx et al., 2021).  

Anxiety disorders are highly co-morbid with mood disorders, which involve 

emotional disturbances manifested as excessive and sustained feelings of depression, 

mania, or both (Penninx et al., 2021; Thibaut, 2017; Datta et al., 2021). Mood disorders 

are generally categorized into depressive disorders and bipolar disorders. Depressive 

disorders can be further classified into major depressive disorder (MDD), persistent 

depressive disorder, disruptive mood dysregulation disorder, and premenstrual dysphoric 

disorder; whereas bipolar disorders can be classified into bipolar I disorder, bipolar II 

disorder, cyclothymia, and substance-induced bipolar disorder (Datta et al., 2021). 

Depression is characterized by persistent sadness, anhedonia (i.e., loss of 

interest/pleasure), low energy, trouble with concentrating, sleep disturbance and worse 

appetite, which would disrupt daily activities and psychosocial functions (Li et al., 2021; 

Datta et al., 2021). Bipolar disorders involve biphasic mood episodes alternating between 

depression and mania/hypomania (Datta et al., 2021). Mania refers to a distinct period of 

persistent euphoria or irritable mood with hyperactivity or excessive energy (Jain & 

Mitra, 2023).  

Similar to anxiety disorders, depressive disorders and bipolar disorders are 

diagnosed based on DSM-5 and ICD-11, requiring clinical judgement of duration, 

severity, and degree of distress and impairment (Malhi & Mann, 2018; Datta et al., 2021). 

Assessment questionnaires are often utilized as screening tool during the process of 

diagnosis as well, which for instance include the nine-item Patient Health Questionnaires, 

and the Beck Depression Inventory (García-Batista et al., 2018; Maurer et al., 2018). For 

the purpose of this study, anxiety and depressive disorders will be the main focus due to 

their high prevalence and association with substance abuse globally. Depressive disorders 
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are affecting approximately 280 million people globally (World Health Organization, 

2023), and importantly, females are twice as likely to be affected vs. males (Malhi & 

Mann, 2018). Decades of research have discovered a wide range of factors that could 

contribute to the pathogenesis of depressive disorders (Li et al., 2021; Malhi & Mann, 

2018), such as the monoamine hypothesis, aberrations in the hypothalamus-pituitary-

adrenal (HPA) axis, neuroinflammation, disrupted synaptic plasticity and neurogenesis, 

structural and functional changes in brain regions, and interactions between genes and 

environment. Considering nicotine addiction, anxiety disorders, and depressive disorders, 

there are overlapping symptomologies across the three disorders, given the role of the 

mesocorticolimbic system in reward learning, motivation/goal-directed behaviours, 

cognitive function, emotion regulation and fear processing. Indeed, the PFC, NAc, VTA, 

Hipp and BLA are often recognized as primary neural regions of interest in these 

disorders.  

1.5 Clinical Findings of Nicotine Dependence and 
Anxiety/Depressive Disorders 

Given the influence of nicotine on neuronal activity states, and the role of the 

mesocorticolimbic system in addiction and mood/anxiety disorders, it is not surprising 

that nicotine dependence is associated with increased risk of mood and anxiety disorders 

(Laviolette, 2021; Moylan et al., 2013). Researchers have always questioned the direction 

of causality between smoking and these psychiatric disorders. For example, individuals 

with social anxiety have reported increased tobacco use, suggesting that tobacco products 

may serve as a medium to relieve anxiety in social situations (Sonntag et al., 2000). 

Alternatively, nicotine addiction could result in anxiety and depressive disorders by 

disrupting different neurotransmitter systems and underlying molecular pathways 

associated with these disorders (Moylan et al., 2013; Fluharty et al., 2017). Overall, both 

relationships appear not to be mutually exclusive and could co-exist in a positive 

feedback loop manner, indicating the complex interactions between these variables along 

with other confounding factors. For the purpose of this study, we will focus on the latter, 

wherein neurodevelepmental nicotine exposure could trigger pathophysiological 
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processes in the mesocorticolimbic system, setting the stage for the development of mood 

and anxiety disorders in later life.  

Many clinical studies have demonstrated strong associations between nicotine 

addiction and the presence of mood and anxiety disorders. From prospective cohort 

studies, smoking behaviours have been shown to unidirectionally increase anxiety and 

mood disorder symptoms, as well as the likelihood and onset of panic attacks, even when 

controlling for socioeconomic factors and other confounding variables (Isensee et al., 

2003; Brown et al., 1996; Cuijpers et al., 2007). Furthermore, causal relationships 

between smoking behaviours and depressive disorders have also been reported. For 

example, using a fixed-effects regression model and structural equation modelling 

methods, Boden et al. (2010) examined the causal relationship between smoking and 

depression at the age of 18, 21 and 25 years in a birth cohort. The fixed-effects regression 

model revealed persistent significant associations between nicotine dependence and 

depressive symptoms at each age point, even after adjustments for time-dynamic 

confounding factors such as stressful life events and other illicit drug uses. A series of 

structural equation models were then used to examine both unidirectional and reciprocal 

effects between smoking and depression at these time points, where the best-fitting causal 

model was indicative of nicotine addiction causally leading to increased risks of 

depression vs. a reverse causality effect in which the presence of depression led to 

increased smoking behaviours. Another similar study investigated the association 

between regular cigarette smoking and the subsequent new onset of mood and anxiety 

disorders (Mojtabai and Crum, 2013). This comprehensive review utilized logistic 

regression analysis to examine the relationship between smoking behaviours preceding 

the onset of MDD, persistent depressive disorders, manic episodes, generalized anxiety 

disorder, and panic disorders. Regular smokers displayed a higher likelihood of new 

onset mood and anxiety disorders, where this association was more significant in 

participants aged 18 to 49 years but not older adults, indicating age could be another 

factor in this relationship. Altogether, there is strong evidence suggesting nicotine 

dependence could result in the onset of mood and anxiety disorders. However, the 

following critical question would be – how does nicotine addiction affect the 
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mesocorticolimbic system and how might these impacts set up the brain for increased risk 

for mood/anxiety disorders in later life? 

To answer this question, several human imaging studies have examined activation 

dynamics in the mesocorticolimbic system under cognitive tasks. For instance, Sweitzer 

et al. (2016) studied whether changes in striatal processing of rewards would predict 

relapse likelihood during smoking cessation period. Disordered reward processing within 

the mesolimbic dopamine circuitry has been implicated in addictive disorders including 

nicotine dependence. The incentive sensitization theory posits that repeated drug 

exposure (e.g., nicotine) would result in a sensitized mesolimbic system to drug-related 

cues, thus conferring motivational incentive properties to these stimuli and leading to 

drug-seeking behaviours (Robinson & Berridge, 1993). On the other hand, the opponent 

process theory postulates that chronic drug exposure would alter reward processing of the 

striatum, where non-drug rewards lose their incentive value and fail to motivate 

behaviours (Koob & Le Moal, 2005). In this study, participants attended two functional 

magnetic resonance imaging (fMRI) sessions before and after abstinence, where they 

completed a reward guessing task to earn smoking and monetary rewards. Next, they 

attempted smoking cessation by a 3-week contingency management plan to examine 

relapse behaviours. Statistical analyses revealed increased striatal activation in 

anticipation of smoking reward, but decreased activation for monetary reward. 

Furthermore, individuals with greater decrements in striatal activation to monetary 

reward were more likely to relapse during smoking cessation period. Another similar 

fMRI study has shown heightened activation pattern in the PFC and NAc in smokers 

when presented with smoking-related cues, but not with neutral cue (David et al., 2005). 

These findings provide significant clinical relevance since they might serve as possible 

explanations behind decreased motivation or goal-oriented behaviours in smokers with 

depressive disorders. Moreover, another study has investigated the functional role of 

frontal cortical regions in young smokers using the Stroop colour-word test (Yuan et al., 

2016). The Stroop colour-word assesses cognitive control, which involves frontal cortical 

regions (Matsumoto & Tanaka, 2004). In this task, participants were presented with 

different colour-words (e.g., red, green, blue) and they were required to identify the ink 

colour of the word (e.g., the word “red” printed in green ink; the answer is green). 
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Resting-state functional connectivity (RSFC) was also conducted to evaluate interactions 

between frontostriatal circuitries. Young smokers exhibited reduced RSFC between the 

striatum, the PFC and limbic regions. Increased performance errors were also observed in 

young smokers, which were positively correlated with the number of cigarette packs 

smoked per year. Altogether, considerable evidence is alluding to the negative influence 

of nicotine dependence on the mesocorticolimbic system, by disrupting normal reward 

processing function and impairing higher-order cognitive abilities in regular smokers.  

1.6 Pre-clinical Studies of Adolescent Nicotine Exposure 

As discussed previously, it has been demonstrated that nicotine addiction can 

negatively affect the mesocorticolimbic system and result in mood and anxiety disorders. 

However, clinical studies present challenges in determining the underlying neural 

mechanisms and pathophysiological effects of nicotine dependence on the brain, due to 

ethical concerns and various confounding variables in human population. Hence, pre-

clinical studies have been conducted to experimentally model nicotine exposure in 

humans, in attempts to examine relevant neurobiological changes that may place specific 

individuals and populations at risk. Although there are obvious differences in complexity 

between rodent and human brains, similarities in adolescent brain maturation exist across 

these two species with regards to synaptogenesis events, anatomical, neurochemical, and 

hormonal changes (Agoglia et al., 2017; Semple et al., 2013). Depending on sex and 

species, adolescence and sexual maturation could begin as early as post-natal day (PND) 

21 in rats and last until PND 60 (Yuan et al., 2015; Brenhouse & Andersen, 2011; 

McCutcheon & Marinelli, 2009). Compared to human clinical studies, rodent modelling 

of adolescent brain development offers precise experimental manipulation of drug 

exposure temporally and concentration-wise, and controls for environmental differences, 

which are difficult to control for in epidemiology studies. Taken together, to gain a better 

understanding of the long-term effects of chronic nicotine exposure on increased 

vulnerability to mood and anxiety disorders, clinical and pre-clinical studies are both 

necessary and essential to draw mechanistic inferences about these observed associations 

in human populations.  
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Provided the immaturity of the mesocorticolimbic system during adolescence and 

the effects of nicotine on neuronal activity, a plethora of pre-clinical animal studies have 

investigated how chronic adolescent nicotine exposure could lead to anxiety and 

depressive-like behaviours by impeding different neurotransmissions in relevant brain 

regions. For example, Jobson et al. (2019) and Hudson et al. (2021) examined the 

neurobiological consequences of chronic adolescent nicotine exposure with anxiety and 

depressive-related behavioural paradigms, in-vivo electrophysiology and tissue molecular 

analysis via Western Blot. In this protocol, male, adolescent Sprague Dawley rats 

received either subcutaneous (S.C.) nicotine or saline injections 3 times daily, from PND 

35 to PND 44 (i.e., 10 consecutive days); whereas male adult rats received S.C. nicotine 

or saline injections from PND 65 to PND 74 and served as the control group. After that, 

animals stayed in their home cages for a 30-day drug-free washout period until 

behavioural testing was carried out, to examine whether chronic adolescent nicotine 

exposure alone would be sufficient in inducing anxiety and depressive-like phenotypes. 

Results from both studies revealed only rats treated with nicotine during adolescence 

displayed anxiety and depressive-like behaviours. In the open field test (OFT) and light-

dark box (LDB) test, adolescent-nicotine-treated rats spent less time in the central zone 

and the light side of the apparatus respectively, indicative of anxiety-like behaviours 

since normal, healthy rodents have a tendency to explore open spaces when they are less 

anxious (Heinz et al., 2021). In the sucrose preference test (SPT) and forced swim test 

(FST), the same group of animals exhibited reduced sucrose preference index and 

increased immobility time respectively. Furthermore, decreased sociability scores were 

observed in these animals as well. These behaviours resemble anhedonia and lower 

motivation states in depressive disorders, which are VTA- and NAc-dependent given the 

role of the VTA→NAc pathway in reward learning (Berhow et al. 1995; Supekar et al., 

2018; Papakostas, 2020; Miyanishi & Nitta, 2021). Jobson et al. (2019) also reported that 

these animals experienced heightened sensitivity to non-salient fear stimuli, which could 

implicate abnormality in fear processing pathways common in individuals with anxiety 

and specific phobia (Shin & Liberzon, 2010). Beyond behavioural phenotypes, 

dysregulation in neuronal firing patterns was observed in cortical and 

motivation/emotional processing regions. In the mPFC and VTA respectively, pyramidal 
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and DA neurons both displayed hyperactivity in spontaneous firing frequency and burst 

activity (Jobson et al., 2019), whereas medium spiny neurons (MSNs) in the NAc showed 

increased tonic firing activity but decreased bursting rate (Hudson et al., 2021). These 

neurotransmission disturbances are consistent with other pre-clinical studies of anxiety 

and depressive-related phenotypes, where dysregulated E/I balance in the PFC and 

aberrant DA and GABA signaling in the VTA and NAc were observed (Zhu et al., 2017; 

Francis et al., 2015; Bi et al., 2013; Yorgason et al., 2013).  

In addition to aberrations in behavioural and electrophysiological outcomes, 

disruptions in molecular targets were reported in the mPFC and NAc as well, where there 

was a decrease in dopamine 1 receptor (D1R) but no change in dopamine 2 receptor 

(D2R) expression level in both regions (Jobson et al., 2019; Hudson et al., 2021). D1R 

and D2R have been suggested to be involved in cognitive function and modulation of E/I 

balance in the PFC (Li et al., 2011; Robinson & Sohal, 2017; Abi-Dargham et al., 2002; 

Floresco & Magyar, 2006; Seamans & Yang, 2004; Xing et al., 2022), as well as reward 

and aversive learning in the NAc (Hikida et al., 2010; Kravitz et al., 2012; Soares-Cunha 

et al., 2020). Thus, alterations in either D1R or D2R level may indicate disturbances in 

downstream signaling cascades or pathological changes in behavioural-related circuitries 

in the mesocorticolimbic system. Finally, in another study, adolescent-nicotine-treated 

male Wistar rats displayed impaired attentional performance and increments in impulsive 

actions, which are both PFC-dependent cognitive abilities (Counotte et al., 2009). This 

deficit in cognitive performance was also associated with excessive DA release in the 

mPFC. Overall, it appears that chronic adolescent nicotine exposure could disrupt 

different neurotransmitter dynamics in the mesocorticolimbic system, and ultimately lead 

to anxiety/depressive-like behaviours as well as deficits in cognitive control.  

1.7 Molecular Targets Relevant in Anxiety and Depressive 
Disorders 

Apart from behavioural and neuronal aberrations, disturbances in molecular 

targets and signaling pathways have also been reported in anxiety and depressive 

disorders. Mentioned previously, two common nAChR subtypes in the brain are the 42 

nAChRs and the homomeric 7 nAChRs (Yuan et al., 2015; Perry et al., 2002; Gotti et 
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al., 2006; Dani & Bertrand, 2007). The cholinergic system and nAChRs in the mPFC 

play a crucial role in attention and learning (Dalley et al., 2001; Hahn et al., 2003). In 

anxiety and depressive disorders, patients often experience difficulty in maintaining 

concentration and impairments in executive function, working memory and psychomotor 

processing speed (Lam et al., 2014; McIntyre et al., 2013; Murrough et al., 2011). In pre-

clinical models, one previous study has reported that 7 nAChRs knockout mice 

displayed worse performances in the delayed matching-to-place task of the Morris water 

maze (Fernandes et al., 2006), and stimulation of these receptors enhanced persistent 

neuronal firing of N-methyl-d-aspartic acid receptor (NMDAR)-mediated/working 

memory-related circuits in the DLPFC (Yang et al., 2013). For the 2 subunit, Guillem et 

al. (2011) demonstrated that 2-knockout mice exhibited impaired attentional 

performance, and re-expression of 2-nAChRs in the prelimbic (PL) region of the mPFC 

was sufficient to reverse the attentional deficits in these mice. Hence, expression levels of 

the 7 and 2 subunits of nAChRs could serve as potential biomarkers to draw 

associations with cognitive performance in pre-clinical rodent models.  

Besides cholinergic targets in the PFC, dysregulation of the E/I balance in the 

PFC has also been implicated in pre-clinical and clinical studies of anxiety and 

depression (Bi et al., 2013; Veeraiah et al., 2014; Czéh et al., 2018; Ghosal et al., 2017; 

Lener et al., 2017). For instance, infusion of a GABA-A receptor antagonist into the 

infralimbic (IL) region of the mPFC resulted in anxiety-like behaviours in mice in 

elevated plus maze (EPM) and OFT (Bi et al., 2013). This behavioural change was 

associated with smaller inhibitory postsynaptic currents (IPSCs) and larger excitatory 

postsynaptic currents (EPSCs) in pyramidal neurons in the IL cortex, suggesting the role 

of mPFC imbalanced E/I level in anxiety-related behaviours. For MDD patients, proton 

magnetic resonance spectroscopy revealed lower GABA level in the DLPFC (Yildiz-

Yesiloglu & Ankerst, 2006), a cortical region functionally homologous to the mPFC in 

rodent (Uylings et al., 2003). Hyperactive glutamate signaling and reduced GABA level 

were also reported in pre-clinical rodent models of depression and depressed patients 

(Veeraiah et al., 2014; Czéh et al., 2018; Arnone et al., 2015; Jobson et al., 2019). 

Altogether, these findings are pointing to the involvement of PFC E/I balance in anxiety 
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and depressive disorders. Thus, glutamate and GABA-related targets such as vesicular 

glutamate transporters (VGLUT; transporting glutamate to synaptic vesicles) and 

glutamate decarboxylase (GAD; involved in GABA synthesis; Walls et al., 2011) could 

be used as indirect markers to estimate glutamate and GABA signaling activity (i.e., E/I 

balance) in the PFC in pre-clinical studies of anxiety and depressive-related outcomes. 

The VTA→NAc DA pathway plays a pivotal role in motivation and reward 

learning behaviours, as mentioned previously. Therefore, expression levels of D1R and 

D2R in the NAc could act as indirect markers for dopamine signaling in pre-clinical 

models as well. It also appears that D1R and D2R are involved in distinctive roles in the 

NAc. For example, Francis et al. (2015) reported that optogenetic activation of D1R-

MSNs in the NAc promoted social interaction and sucrose preference, whereas activating 

D2R-MSNs resulted in social avoidance in social defeat stress rodent model. Another 

study also demonstrated optogenetic stimulation of D1R-MSNs in the NAc enhanced 

cocaine preference in a conditioned place preference (CPP) test, which is typically used 

to study rewarding and aversive effects of different drugs; whereas activation of D2R-

MSNs in the NAc suppressed cocaine preference (Lobo et al., 2010). Furthermore, 

GABA signaling in the NAc has been shown to modulate DA release from the VTA 

(Yang et al., 2018), suggesting GAD could be an indirect marker of local inhibition in the 

VTA→NAc circuitry. On the other hand, D1R and D2R in the PFC seem to play a role in 

cognitive functions, where blockade of D1R and D2Rs in the mPFC impaired 

performances in attention set-shifting tasks and working memory task (Ragozzino, 2002; 

Floresco et al., 2006; Sawaguchi and Goldman-Rakic, 1994). Hence, D1R and D2R 

expression level in the PFC could be another indirect proxy for cognitive functions in 

pre-clinical studies.  

Furthermore, many pre-clinical and clinical studies have been investigating the 

role of brain-derived neurotrophic factor (BDNF) in depressive disorders. BDNF is an 

upstream signaling molecule that binds to tyrosine kinase receptor B (TrkB), and it has 

been shown to play a role in synaptic plasticity and structural integrity of synapses in the 

CNS (Minichiello et al., 2002; Panja et al., 2014; Bosch et al., 2014; Ji et al., 2010). 

Previous studies have demonstrated BDNF-TrkB signaling could mediate long-term 
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potentiation (LTP) in the Hipp by recruiting phospholipase Cγ (PLC) (Minichiello et al., 

2002; Panja et al., 2014). BDNF-TrkB signaling could also maintain synaptic integrity 

through local interactions with cytoskeletal-related proteins, and facilitate neurite 

elongation, neurite branching, spine head enlargement and spine neck elongation (Bosch 

et al., 2014; Ji et al., 2010). In depressive disorders, reduced brain region volume has 

been observed in the mesocorticolimbic system, and this decrease in volume is thought to 

be associated with the loss of synaptic integrity (Yu & Chen, 2011; Belleau et al., 2019; 

McKinnon et al., 2009; Videbech & Ravnkilde, 2004; Wise et al., 2017; Treadway et al., 

2015). Provided the role of BDNF in synaptic plasticity and integrity, it has been 

proposed that alterations in BDNF levels could be associated with disrupted synaptic 

integrity in depressive disorders. Human post-mortem studies have also reported lower 

BDNF levels in the PFC of suicide patients (Karege et al., 2005). Mice with loss of 

BDNF expression in forebrain regions also displayed depressive-like behaviours 

(Monteggia et al., 2007; Lindholm and Castrén, 2014). Interestingly, local BDNF 

infusion in the VTA induces depressive-like behaviours in the FST, where inhibition of 

BDNF in the NAc produces antidepressant effects in the social defeat paradigm (Berton 

et al., 2006; Eisch et al., 2003). Taken together, there appears to be region-specific effects 

of BDNF in the mesocorticolimbic system parallel to depressive-related outcomes. Thus, 

BDNF level could serve as an indirect marker for synaptic integrity which could be 

associated with behavioural phenotypes relevant to depressive disorders in animal 

models.  

1.8 Literature Gap in Sex Differences in Nicotine Addiction 

As discussed previously, the existing literature has demonstrated how repeated 

nicotine exposure during adolescence can induce pathological states in the 

mesocorticolimbic system and increase the vulnerability of developing mood and anxiety 

disorders. Nevertheless, despite these findings, there remains a substantial knowledge gap 

in how males vs. females may respond differently to nicotine exposure. The majority of 

pre-clinical studies to-date have only utilized male animals as experimental subjects, 

thus, findings from these studies cannot be generalized to female. Furthermore, limited 

studies have focused on the sex-specific responses to nicotine exposure in terms of mood 
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and anxiety-related outcomes; and even in available studies, reported results are currently 

mixed and show no clear signs of direction (Caldarone et al., 2008; Cheeta et al., 2001; 

Elliott et al., 2004; Faraday et al., 2001; Torres et al., 2013). For instance, Caldarone et 

al., (2008) reported anxiogenic effects of chronic nicotine exposure in female C57BL/6J 

mice, where they spent less time exploring the open arm in EPM. On the contrary, 

Faraday et al. (2001) demonstrated that female Sprague Dawley rats with chronic 

nicotine exposure displayed fewer anxiety-related behaviours compared to male rats, 

where they spent more time in the central zone of the OFT apparatus. However, 

importantly, most studies differ in nicotine administration protocols and experimental 

animal species/strains. These discrepancies in results could also be due to potential 

interactions between the estrus cycle and various neurotransmission systems in the brain. 

Taken together, more consistent nicotine administration protocols and experimental 

paradigms need to be developed to properly investigate how females vs. males may 

respond to chronic nicotine exposure in terms of anxiety and depressive-like phenotypes, 

as well as the potential interactions between estrogen/progesterone, nicotinic receptors in 

the CNS, and the mesocorticolimbic system.  

In clinical populations, females are shown to have higher prevalence of mood and 

anxiety disorders (McLean et al., 2011; Ford & Erlinger, 2004). They also experience 

more difficulty in quitting nicotine products as well as lower efficacy in nicotine 

replacement therapies (Torres & O’Dell, 2016; Perkins, 2001; Perkins & Scott, 2008; 

Bohadana et al., 2003; Cepeda-Benito et al., 2004; Costello et al., 2011). Moreover, 

studies have suggested females are less sensitive to the pharmacological effects of 

nicotine, and they are more reinforced by sensory cues strongly associated with smoking 

in the absence of nicotine (e.g., greater craving relief from a denicotinized tobacco 

inhaler) (Perkins, 1999; Perkins et al., 1999; McBride et al., 2006; Barrett, 2010). 

Furthermore, there is evidence suggesting sex differences in motivation to smoke, where 

males smoke primarily for the rewarding effects of nicotine (i.e., dependent on 

mesocorticolimbic system), and females are more likely to smoke to relieve stress, 

anxiety, and negative withdrawal symptoms (Perkins et al., 1999; Perkins et al., 2012; 

Crisp et al., 1999). It has been reported that nicotine provides calming effects in young 

women as well (File et al., 2001). Female smokers also exhibited a higher response in the 



23 

 

dorsal striatum than in the ventral striatum to nicotine stimulation compared to male 

smokers, which could potentially underlie the greater resistance to nicotine cessation 

interventions in females, given the preferential role of dorsal striatum in habit formation 

vs the ventral striatum, which is more critical for reinforcement learning (Cosgrove et al., 

2014). This could mean that smoking could become a habit sooner in females compared 

to males. Sex-specific differences in high-affinity 2 nAChR availability were also 

displayed in the striatum, where there was higher availability in male smokers compared 

to non-smokers, but no significant differences in the striatum between female smokers vs 

non-smokers (Cosgrove et al., 2012). These distinctive phenotypes are suggestive of 

fundamental differences in the neuropharmacology of nicotine between males and 

females, as well as the contrasting perceptions to smoking behaviours, and disparate 

outcomes in response to smoking-cessation therapies.  

1.9 Research Objectives and General Hypothesis 

From the extant literature, there is still a relatively limited knowledge on how 

females vs. males responds to chronic nicotine exposure, especially during adolescence, 

specifically in the context of mood and anxiety-related outcome measures. To answer 

these questions, the current project serves as a starting point that aims to characterize sex 

differences in anxiety and depressive-related outcomes in response to chronic adolescent 

nicotine exposure, in terms of behavioural, neuronal and molecular measures using a 

previously established pre-clinical rodent model (Jobson et al., 2018). This thesis has 

three primary objectives and associated hypotheses building upon existing clinical and 

pre-clinical findings: 

Objective 1: Characterize the long-term effects of chronic adolescent nicotine exposure 

on anxiety and depressive-like behaviours as well as cognitive function in male vs. 

female Sprague Dawley rat cohorts. 

• Hypothesis: Nicotine-treated male and female rats will display differential 

anxiety and depressive-like behaviours as well as cognitive deficits compared to 

vehicle male and female rats respectively. These behavioural phenotypes will be 

divergent across male vs. female cohorts. 
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Objective 2: Examine the long-term effects of chronic adolescent nicotine exposure on 

baseline neural activity dynamics in the PFC and VTA linked to emotional deficits using 

in-vivo electrophysiology and analyzing single unit neuronal activity patterns and local 

field potential (LFP) oscillatory powers. 

• Hypothesis: Nicotine-treated male and female rats will exhibit hyperactive 

glutamatergic and DA signaling in the PFC and VTA respectively compared to 

vehicle male and female rats respectively. These neuronal/electrophysiological 

phenotypes will be divergent across male vs. female cohorts. 

Objective 3: Determine the long-term effects of chronic adolescent nicotine exposure on 

cognitive-, anxiety- and depressive-related molecular targets in the PFC and NAc, 

including 7 nAChR,  2 nAChR, VGLUT1, GAD65, D1R, D2R and BDNF. 

• Hypothesis: Nicotine-treated male and female rats will exhibit dysregulated 

expression levels of several molecular markers for nicotine dependence and 

mood/anxiety disorders, including: 7 nAChR,  2 nAChR, GAD65, D1R, D2R, 

BDNF, VGLUT1 in the NAc/PFC network. These molecular biomarker 

expression patterns will be divergent across male vs. female cohorts. 
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Chapter 2  

2 Materials and Methods 

2.1 Animal Model 

2.1.1 Animals and Housing 

Male and female Sprague-Dawley rats (n=88) were obtained at PND 28 from 

Charles River Laboratories (Quebec, Canada). Animals were pair-housed in a controlled 

12-hour light-dark cycle facility (constant temperature and humidity) with access to food 

and water ad libitum. All experimental procedures were conducted in accordance with 

Canadian Council of Animal Care and institutional guidelines.  

2.1.2 Adolescent Nicotine Exposure Protocol 

The chronic nicotine exposure protocol was adapted from previous 

neurodevelopmental nicotine exposure models, and it was shown to induce behavioural, 

neuronal and molecular dysregulations resembling mood and anxiety-related phenotypes 

(Counotte et al., 2009; Jobson et al., 2019; Hudson et al., 2021). Rats were administered 

sub-cutaneous injections of 0.4 mg/kg of nicotine (NIC; nicotine bitartrate, Sigma) or 

phosphate buffered saline (VEH; control) 3x daily at (10:00/13:00/16:00) for 10 

consecutive days (PND 35-44). Following nicotine exposure, rats were left in the home 

cage for a 30-day drug-free washout period until the start of experiments on PND 75. 

Although direct physiological comparison between human tobacco/vaping exposure and 

systemic nicotine exposure in rats is not possible, the total concentration of daily nicotine 

exposure (1.2 mg/kg) used in the present model corresponds to blood nicotine levels 

obtained from smoking ~1 pack of cigarettes per day in moderate/heavy smokers (Fung 

& Lau, 1989; Murrin et al., 1987). The age range of nicotine exposure (PND 35-44) 

corresponds to the mid-adolescence stage in rats (McCormick et al., 2013; Wilkin et al., 

2012), a typical period where human adolescents are first exposed to tobacco-related 

products and other drugs of abuse (Edvardsson et al., 2009; Taioli and Wynder, 1991; 

Stanton et al., 1991). A schematic representation of the experimental procedures is 

presented in Figure 3. 
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Figure 3. Adolescent nicotine exposure protocol. Schematic illustration showing 

chronic nicotine administration protocol for male and female adolescent rat cohorts, as 

well as associated behavioural, electrophysiological and protein analysis experiments.  
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2.2 Behavioural Testing 

Starting on PND 75 and ending on PND 100, a series of behavioural assays were 

performed to examine the long-term effects of adolescent nicotine exposure on anxiety 

and depressive-like behaviours. Between experiments, rats were returned to the home 

cage for a minimum of 24-48 h. We conducted the following series of behavioural 

assays: 

2.2.1 Open Field Test (OFT) 

The open field test (OFT) functions as a measure of locomotion and anxiety. Rats 

were placed in an automated open field activity chamber (80x80×50 cm, Med Associates) 

for 15 mins. Locomotor activity was assessed as the total distance travelled in the entire 

apparatus, while anxiety was assessed as the time spent in the central zone of the chamber 

during the first 5 min of the test. The chamber was cleaned between sessions with a 70% 

ethanol solution to avoid olfactory cue bias. Time spent in the central zone relative to the 

peripheral area is a well-established index of anxiety as higher states of anxiety are 

associated with lower exploration times in the central region (Seibenhener & Wooten, 

2015; Sarikahya et al., 2022). 

2.2.2 Elevated Plus Maze (EPM) 

The EPM is a measure of anxiety, and the apparatus [black acrylic, 4 arms 

(10 × 50 cm) stemming from a 10 × 10 cm platform forming a plus shape] is raised above 

the floor by 50 cm and dimly illuminated at 40 lux (Szkudlarek et al., 2019). Two 

opposing arms are enclosed with 40 cm high walls, while the other two arms are open 

with a 1-cm-high barrier. Rats were placed on the central platform facing a closed arm 

and explored the maze for 5 mins. The apparatus was cleaned between sessions with a 

70% ethanol solution to avoid olfactory cue bias. Anxiety-like behaviours were defined 

as the number of entries (i.e., all four paws in arm) and the time spent in closed and open 

arms. Behaviours were video recorded and analyzed offline (Behaview software). 
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2.2.3 Spontaneous alternation (SA) task 

The SA task is an assessment of spatial working memory (Kraeuter et al., 2019). 

The test apparatus is a Y-shaped maze with 3 arms 120 from each other (black non-

reflecting acrylic; arm length: 50 cm; wall height: 40 cm) (Szkudlarek et al., 2019). Rats 

were placed in the center of the arm facing either arm A, B or C (counterbalanced 

between animals), and behaviours were recorded for 5 mins. The apparatus was cleaned 

between sessions with a 70% ethanol solution to avoid olfactory cue bias. An arm entry 

was counted only when all 4 paws were in the arm. The alternation score was calculated 

as (unique triplets)/(total arm entries – 2) x 100%, where unique triplets were considered 

as three consecutive arm entries (e.g., ABC, BCA) without re-entries (e.g., AAB) or 

entries to previously visited arms (e.g., ABA, CBC) 

2.2.4 Novel object recognition (NOR) 

The NOR task is a measure of recognition memory (Lueptow, 2017). The test 

apparatus is a 80×80×50 cm black acrylic box, and the test session consisted of two 3-

min trials with an inter-trial interval (ITI) of 60 mins. In the first trial (training phase), 

rats were allowed to freely explore the arena containing a pair of identical objects for 3 

mins (e.g., training phase: objects A|A). One hour later in the second trial (testing phase), 

rats were placed in the same chamber again but with 1 copy of the first (familiar) object 

and 1 copy of a novel object (e.g., testing phase: objects A|B). Object positions were 

counterbalanced and randomized. The chamber and objects were cleaned between trials 

with a 70% ethanol solution to avoid olfactory cue bias. Object exploration was defined 

as sniffing the object. Exploration time of each object was evaluated, and preference was 

expressed as object recognition score: (time spent with novel object/total time exploring 

both objects) × 100%.  

2.2.5 Temporal order novel object recognition (TONOR) 

The TONOR task is an extension of NOR that assesses the recency/temporal 

aspect of recognition memory (Barker et al., 2007; Morici et al., 2015). The same 

apparatus from NOR was used and the test session consisted of three 3-min trials with ITI 

of 60 mins. In the first trial (training phase), rats were allowed to freely explore the arena 
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containing a pair of identical objects for 3 mins (e.g., 1st training phase: objects A|A). In 

the second trial (training phase), rats were placed in the arena again for 3 mins but with a 

different pair of identical objects (e.g., 2nd training phase: objects B|B). In the third trial 

(testing phase), rats were allowed to explore the chamber again but with 1 copy of the 

first (more novel, or less familiar/recent) object and 1 copy of the second (less novel or 

more familiar/recent) object (e.g., testing phase: objects A|B). Object positions were 

counterbalanced and randomized. The chamber and objects were cleaned between trials 

with a 70% ethanol solution to avoid olfactory cue bias. Object exploration was defined 

as sniffing the object. Exploration time of each object was evaluated, and preference was 

expressed as object recognition score: (time spent with first object/total time exploring 

both objects) × 100%. A normal, healthy rat would explore the first object more since it is 

more novel (i.e., less familiar based on the order presented) relative to the second object. 

2.2.6 Three-chamber sociability and social novelty test 

The social interaction (SI) test evaluates two aspects of social behaviours: social 

motivation and social recognition memory (Kaidanovich-Beilin et al., 2011; Renard et 

al., 2017a,b; Szkudlarek et al., 2019). The test apparatus consisted of a transparent acrylic 

chamber divided into three equal compartments separated with guillotine doors. One day 

before the assessment, rats were room acclimated for 30 min and subsequently habituated 

to the apparatus (3 mins center + 12 mins entire apparatus). The social interaction test 

involves 2 stages. In stage 1 (social motivation test), following a 30-min acclimatization, 

rats were placed in the central compartment (3 mins; guillotine doors in place). 

Subsequently, 2 wire cages were placed in the side compartments (one contained a 

stranger male rat; the other one is empty) and the test rat could explore the entire 

apparatus for 6 mins. In stage 2 (social memory test), a novel, unfamiliar stranger rat was 

placed in the previously empty wire cage, and the test rat could explore both chambers 

(containing the previously encountered rat or the new stranger rat) for 6 mins. The 

position of empty cage and stranger rats were counterbalanced between sessions. The 

chamber was also cleaned between trials with a 70% ethanol solution to avoid olfactory 

cue bias. Behaviors were video recorded and analyzed offline. The total duration of 

exploratory bouts with the stranger vs. empty cage (stage 1) was calculated as sociability 
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index = tstranger/(tstranger + tempty) x 100%. The time spent with the previously encountered 

vs. novel stranger rat in phase 2, was calculated as social recognition 

score = tnovel/(tnovel + tfamiliar) x 100%. 

2.2.7 Porsolt forced swim test (FST) 

The FST is a measure of learned helplessness, a symptom in depression. Learned 

helplessness refers to the deficit in escape/coping behaviours after exposure to 

uncontrollable stress (Vollmayr & Gass, 2013). Rats were placed in a 70 × 19 cm 

cylinder filled 3⁄4 of the way with water (room temperature) for a 10-min test phase. 

Behaviors examined included average times spent climbing, swimming, and being 

immobile, as well as latency to immobility. (Can et al., 2012; Jobson et al., 2019; Hudson 

et al., 2021). Behaviours were recorded and analyzed offline (Behaview software). 

Decreased climbing time and increased immobility time are considered depressive-like 

behaviours since it indicates reduced motivation in escaping the water cylinder. 

2.3 In-vivo Electrophysiology 

2.3.1 Single Unit Recording 

Neuronal recordings were performed unilaterally in the VTA or PFC, as 

previously described (Tan et al., 2009; Renard et al., 2017a,b; Jobson et al., 2019; 

Hudson et al., 2021). Rats were anesthetized with urethane (1.4 g/kg, i.p.) and placed in a 

stereotaxic frame with body temperature maintained at 37±1°C. A scalp incision was 

made and a hole was drilled in the skull overlaying the VTA or PFC. A glass 

microelectrode (with an average impedance of 6–10MΩ) filled with a 2% pontamine sky 

blue solution was slowly lowered using a hydraulic micro-positioner (Kopf 640) into the 

VTA or PFC regions. The coordinates of the recordings were from the (1) VTA, anterior-

posterior (AP): −5.1 to −5.3 mm, medial-lateral (ML): ±0.7 to 1.0 mm from bregma, 

dorsal-ventral (DV): −7 to −9 mm from the dural surface; and the (2) mPFC, AP: +2.6 to 

+4.2 mm, ML: ±0.4 to 1.0 mm from bregma, DV: −1.8 to −3.6 mm from the dural 

surface. Single-unit neuronal activity was filtered (bandpass 0.3–5 kHz) and individual 

action potentials were isolated and amplified (MultiClamp 700B amplifier, Molecular 

Devices), digitized at 25 kHz and recorded using a Digidata 1440 A and pClamp software 
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(Molecular Devices). Recordings of putative DA and pyramidal neurons in the VTA and 

PFC were assessed respectively. Analyses were performed offline using Clampfit10 

(Molecular Devices). Population spontaneous activity was determined in predetermined 

recording tracks separated by 200 μm and the activity of each neuron was recorded for 5 

mins. Putative VTA DA and mPFC pyramidal neurons were identified according to 

previously established electrophysiological features: VTA DA neuron: (1) frequency 10 

Hz, (2) action potential duration 2.2 ms (>1.1 ms from the start to the negative trough), 

(3) single irregular or bursting pattern; mPFC pyramidal neurons: (1) frequency 10 Hz, 

(2) action potential duration 2.5 ms (Ungless and Grace 2012; De Felice et al., 2021). 

The two parameters of activity that were analyzed were basal firing rates and burst 

frequency. The onset of a burst was defined as, (1) VTA DA neurons: 2 consecutive 

spikes with an interspike interval (ISI) of 80 ms; (2) mPFC pyramidal neurons: 3 

consecutive spikes with an ISI of 45 ms. 

2.3.2 Local Field Potential (LFP) Recording 

Local field potential (LFP) signals were analyzed using NeuroExplorer (Nex 

Technologies). LFP signals were decimated to 1 kHz, and lowpass filtered (IIR 

Butterworth filter at 100 Hz; filter order set to 3). Subsequently, a spectrogram function 

was used to calculate the power of oscillations at frequencies between 0–100 Hz (window 

length 2 s; shift 0.5 s). Power values for a given frequency were averaged over time of 

the recording epoch and normalized so that the sum of all power spectrum values equals 

1. The total power was calculated by adding all the power values at frequencies between 

0–59 and 61–80 Hz. Power values at 60±1 Hz were excluded from all the calculations. 

Neural oscillations (i.e., LFP) were defined within specific frequency bands as follows: 

delta, 0-4 Hz; theta, 4-7 Hz; alpha, 7-14 Hz; beta, 14-30 Hz; gamma, 30-80 Hz. 

Following either VTA or PFC recordings, recording electrode locations were marked 

with iontophoretic deposit of Pontamine sky blue (–20 μA for 15 mins), and histological 

analyses were performed later to verify recording sites with light microscopy. 
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2.4 Tissue Molecular Analysis 

2.4.1 Western Blots 

After behavioural testing, rats received an overdose of sodium pentobarbital 

(240 mg/kg, i.p., EuthanylTM). Brains were rapidly removed and flash frozen at −80°C. 

Bilateral punchouts of mPFC and NAc were obtained and homogenized using a Dounce 

homogenizer containing protein extraction lysis buffer (NaCl, Tris pH 8.0, 1% NP-40, 

10% glycerol, and 0.1% sodium dodecyl sulphate [SDS]) with 1:100 protease and 

phosphatase inhibitors included (Halt 100x inhibitor cocktail, ThermoFisher). Following 

homogenization and centrifugation (10000 RPM) at 4°C to remove insoluble material, 

most of the sample was mixed with an equal volume of 2× Laemmli loading buffer and 

heated to 95 °C for 5 min prior to storage at −80 °C. The remaining homogenate (~20 μl) 

was used to determine the concentration of protein in the sample using a Pierce BCA 

Protein Assay kit. The western blotting procedure was performed loading 12.5 or 25 µg 

of protein per well in 8%, 10% or 12% acrylamide denaturing SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) gels. Each blot only contained samples from the vehicle 

group and the nicotine group from one sex (e.g., male VEH and NIC samples in one blot; 

female VEH and NIC samples in another). Samples were subjected to electrophoresis in a 

Bio-Rad Mini Protein 3 Western blotting apparatus with Tris/glycine/SDS buffer (Bio-

Rad Cube Solutions) at 125V for 1.5h. The protein transference into nitrocellulose 

membranes was performed using the Trans-Blot Turbo Transfer System (Bio-Rad) at 2.5 

A for 10 min. Membranes were then blocked with either 5.0% non-fat dry milk or bovine 

serum albumin (BSA; Sigma) in Tris buffered saline with Tween 20 (TBS-T) for 1 hour 

with rocking, at room temperature. The membranes were then incubated overnight in a 

solution of TBS-T with a primary antibody of interest at 4°C with rocking. Primary 

antibody host species, dilutions and sources were as follows: α-tubulin (Mouse, 1:500, 

Santa Cruz Biotechnology; Rabbit, 1:1000, Sigma-Aldrich), -actin (Mouse, 1:1000, 

Sigma-Aldrich), 7-nAChR (Rabbit, 1:1000), Alomone),  2-nAChR (Rabbit, 1:1000, 

NovusBio), VGLUT1 (Mouse, 1:1000, Abcam), GAD65 (Rabbit, 1:1000, Cell 

Signaling), D1R (Rabbit, 1:1000, EMD Millipore), D2R (Mouse, 1:500, EMD Millipore), 

BDNF (Rabbit, 1:1000, Abcam). Following primary antibody incubation, blots were 
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incubated for 1 hour at room temperature with species-appropriate secondary antibodies 

(LI-COR IRDye 680RD and IRDye 800CW; Thermo Scientific) at a 1:5000 dilution in 

either 2.5% non-fat dry milk or BSA in TBS-T. Proteins of interest were imaged using a 

LI-COR Odyssey Infrared Imaging System, and densitometry measurements were 

obtained using Image Studio analysis software. Relative band density was normalized to 

the intensity of the respective α-tubulin or -actin band.  

2.5 Vaginal Sample Collection and Estrous Cycle 
Assessment 

To determine the stages of the estrous cycle and examine their influence on 

behaviours and electrophysiology, vaginal cytology samples were taken for 5 consecutive 

days to establish the length of the cycle, as well as immediately after individual 

behavioural test and upon completion of electrophysiological recordings. This protocol 

was adapted from a previously established method (Cora et al., 2015). 10 L of saline 

solution was flushed in and out of the vagina of the rat with a pipette, and a small drop of 

the sample was placed on a glass slide under a microscope. Then, the stages of the estrous 

cycle were evaluated based on the cell density of neutrophils, nucleated and anucleated 

epithelial cells. 

2.6 Statistical Analyses 

Experimental data are presented as mean ± SEM, and statistical analyses were 

performed using GraphPad Prism 9 (San Diego, CA, USA). All datasets were tested for 

outliers. Comparisons between groups were determined using two-way analysis of 

variance (ANOVA) (sex x treatment) followed by Fisher’s least significant difference 

(LSD) test for each behavioral assay and electrophysiology (p<0.05); whereas Mann-

Whitney U test was used for Western blot protein analysis (p<0.05), since the expression 

level of protein targets in the NIC group was only compared within-group to the average, 

normalized values of the VEH group in each sex. Each blot also only contained samples 

from the vehicle group and nicotine group from one sex (e.g., male VEH and NIC in one 

blot; female VEH and NIC in another). 
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Chapter 3  

3 Results 

3.1 Behavioural Results 

3.1.1 Adolescent nicotine exposure induces long-lasting anxiety-
like behaviours in male but not female 

3.1.1.1 Open Field Test 

Repeated nicotine exposure during adolescence could lead to affective 

dysregulation such as increased anxiety (Mojtabai and Crum, 2013; Jobson et al., 2019; 

Hudson et al., 2021). Therefore, we first assessed anxiety-like behaviours and locomotor 

activity with OFT in adult male and female rats following chronic adolescent nicotine 

exposure (Figure 4A, 4E, 4F). Two-way ANOVA statistical analysis of center zone 

entries and total distance travelled demonstrated main effects of sex (total distance 

travelled: Sex: F(1,60) = 56.76, p  0.0001, Interaction: F(1,60) = 0.3420, p = 0.5609, 

Treatment: F(1,60) = 0.3568, p = 0.5526, Figure 4B; center zone entries: Sex: F(1,58) = 

16.58, p = 0.0001, Treatment: F(1,58) = 0.5756, p = 0.4511, Interaction: F(1,58) = 1.464, p = 

0.2313, Figure 4C). Post hoc Fisher’s LSD showed nicotine-treated female rats and 

female vehicle rats had more total distance travelled and center entries than their male 

counterparts respectively (total distance travelled: male VEH vs. female VEH: p  

0.0001, male NIC vs female NIC: p  0.0001; center entries: male VEH vs. female VEH: 

p = 0.0476, male NIC vs female NIC: p = 0.0004). Statistical analysis also revealed main 

effects of treatment on the time spent in the central zone, (F(1,54) = 5.048, p = 0.0288, 

Figure 4D), where post hoc Fisher’s LSD showed that nicotine-treated male rats spent 

less time in the center compared to male vehicle rats (p = 0.0124), but there were no 

significant differences between female groups in both measures (p = 0.6046). Although 

there were no significant effects of interaction between sex and treatment (F(1,54) = 2.359, 

p = 0.1304), the effect of sex was trending toward significance (F(1,54) = 3.020, p = 

0.0879), with post hoc comparisons revealing nicotine-treated female rats spent more 

time in the center than nicotine-treated male rats (p = 0.0248).   
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Figure 4. Sex-specific effects on locomotive activity and anxiety-related behaviours 

in OFT following chronic adolescent nicotine exposure. (A) Schematic representation 

of the OFT apparatus. (B, C) Adolescent nicotine treatment did not alter locomotive 

activity and center entries within-group, but both female groups had greater distance 

travelled and more center entries compared to their male vehicle and nicotine 

counterparts. (D) Adolescent-nicotine-treated male rats spent less time in the center than 

male vehicle rats, where both female groups performed similarly in this measure (n = 13-

16/treatment/sex). (E, F) Representative activity traces of vehicle vs nicotine-treated rats 
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in each sex. Comparisons were made with two-way ANOVA followed by Fisher’s LSD 

post hoc test, *p < 0.05, ***p < 0.001, ****p < 0.0001, two-tailed. 
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3.1.1.2 Elevated Plus Maze 

Besides OFT, we also examined the long-term sex-specific effects of chronic 

adolescent nicotine exposure on anxiety-like behaviours with EPM (Figure 5A). Two-

way ANOVA analysis of open arm entries indicated main effects of sex, treatment, and 

interaction between both factors (Sex: F(1,59) = 4.259, p = 0.0434; Treatment: F(1,59) = 

5.770, p = 0.0195; Interaction: F(1,59) = 4.836, p = 0.0318; Figure 5B). Post hoc Fisher’s 

LSD revealed nicotine-treated male rats had lower open arm entries than male vehicle 

rats (p = 0.0020), but no significant differences between female groups (p = 0.8854). 

Nicotine-treated female rats also had more open arm entries compared to nicotine-treated 

male rats (p = 0.0035). Statistical analysis demonstrated main effects of treatment and 

interaction between sex and treatment, but not sex, on closed arm entries (Sex: F(1,59) = 

3.313, p = 0.0738; Treatment: F(1,59) = 5.224, p = 0.0259; Interaction: F(1,59) = 6.205, p = 

0.0156; Figure 5C). Post hoc comparisons showed that the nicotine-treated male group 

had fewer closed arm entries than the male vehicle group (p = 0.0014), but there were no 

significant changes between female groups (p = 0.8841). Nicotine-treated female rats also 

had more closed arm entries compared to nicotine-treated male group (p = 0.0032). 

Furthermore, two-way ANOVA analysis of open arm time revealed main effects of 

interaction between sex and treatment, but not sex and treatment independently (Sex: 

F(1,53) = 1.465, p = 0.2314; Treatment: F(1,53) = 1.426, p = 0.2378; Interaction: F(1,53) = 

5.234, p = 0.0262; Figure 5D). Post hoc comparisons indicated that nicotine-treated male 

rats spent less time in the open arm compared to male vehicle rats (p = 0.0199), but both 

female groups performed similarly in this measure (p = 0.4308). Nicotine-treated female 

rats spent more time in the open arm than nicotine-treated male rats as well (p = 0.0193). 

Statistical analysis also revealed main effects of treatment and interaction between sex 

and treatment on closed arm time (Sex: F(1,55) = 1.297, p = 0.2597; Treatment: F(1,55) = 

5.161, p = 0.0270; Interaction: F(1,55) = 4.603, p = 0.0364; Figure 5E), where post hoc 

comparisons showed that nicotine-treated male rats spent more time in the closed arm 

compared to male vehicle rats (p = 0.0041), and there were no significant differences 

between female groups (p = 0.9258). Nicotine-treated male rats also spent more time in 

the closed arm than nicotine-treated female rats (p = 0.0253). 
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Figure 5. Chronic adolescent nicotine exposure results in sex differences in anxiety-

related behaviours in EPM. (A) Schematic representation of the EPM apparatus for 

anxiety test. (B, C) Nicotine-treated male rats displayed lower open arm entries and 

closed arm entries than male vehicle rats, whereas both female groups performed 

similarly (n = 13-16/treatment/sex). (D, E) Adult male rats treated with nicotine during 

adolescence spent less time in the open arm, but more time in the closed arm compared to 

male vehicle group, where there were no significant differences between female groups. 

Comparisons were made with two-way ANOVA followed by Fisher’s LSD post hoc test, 

*p < 0.05, **p < 0.01, two-tailed. 
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3.1.2 Adolescent nicotine exposure induces persistent depressive-
like behaviours in male but not female 

3.1.2.1 Forced Swim Test 

In addition to anxiety disorders, nicotine dependence during adolescence could 

also result in depressive disorders (Boden et al., 2010; Mojtabai and Crum, 2013; Jobson 

et al., 2019; Hudson et al., 2021). Animal models of learned helplessness have been 

shown to be associated with symptoms of depressive disorders as they evaluate the 

motivational state/coping behaviours of animals under uncontrollable aversive events, 

which are often affected in depressed patients (Vollmayr & Gass, 2013; Alloy & 

Abramson, 1982; Maier, 1984; Song & Vilares, 2021). Thus, we assessed depressive-like 

behaviours via the FST in adult male and female rats following chronic adolescent 

nicotine exposure. (Figure 6A). Two-way ANOVA analysis of climbing time 

demonstrated main effects of treatment and interaction between sex and treatment (Sex: 

F(1,60) = 2.470, p = 0.1213; Treatment: F(1,60) = 28.77, p  0.0001; Interaction: F(1,60) = 

40.00, p   0.0001; Figure 6B). Post hoc Fisher’s LSD revealed that nicotine-treated 

male rats exhibited decreased climbing time than male vehicle rats (p  0.0001), but no 

significant differences between both female groups (p = 0.4995). Female vehicle rats had 

lower climbing time compared to male vehicle rats (p = 0.0014), whereas nicotine-treated 

female rats displayed increased climbing time than nicotine-treated male rats (p  

0.0001). Statistical analysis also revealed main effects of interaction between sex and 

treatment on immobility time (Sex: F(1,60) = 0.0475, p = 0.8283; Treatment: F(1,60) = 

2.730, p = 0.1037; Interaction: F(1,60) = 10.40, p = 0.0020; Figure 6C). Post hoc 

comparisons demonstrated that nicotine-treated male rats exhibited increased immobility 

time compared to male vehicle rats (p = 0.0010), and there were no significant 

differences between female groups (p = 0.2704). Female vehicle rats had higher 

immobility time than male vehicle rats (p = 0.0179), whereas nicotine-treated female rats 

displayed lower immobility time than nicotine-treated male rats (p = 0.0376). Two-way 

ANOVA analysis of swimming time showed no main effects of sex, treatment, and 

interaction between sex and treatment (Sex: F(1,60) = 0.9107, p = 0.3438; Treatment: 

F(1,60) = 1.330, p = 0.2535; Interaction: F(1,60) = 0.0568, p = 0.8124; Figure 6D). 
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Moreover, statistical analysis demonstrated main effects of treatment and interaction 

between sex and treatment on latency to immobility (Sex: F(1,60) = 3.478, p = 0.0674; 

Treatment: F(1,60) = 42.69, p   0.0001; Interaction: F(1,60) = 38.55, p   0.0001; Figure 

6E). Post hoc comparisons revealed that nicotine-treated male rats exhibited decreased 

latency to immobility than male vehicle rats (p   0.0001), meaning this treatment group 

reached the immobility state sooner than the male vehicle group; whereas there were no 

significant changes between female groups (p = 0.8191). Female vehicle rats also had 

decreased latency to immobility compared to male vehicle rats (p = 0.0032), whereas 

nicotine-treated female rats displayed increased latency than nicotine-treated male rats (p 

 0.0001). 

3.1.2.2 Social Interaction Test 

Social phobia is common in anxiety disorders and it has been shown to be 

associated with depressive disorders (Ratnani et al., 2017; Beesdo et al., 2009; Penninx et 

al., 2021; DeMartini et al., 2019). Hence, we examined sex differences in social 

interaction behaviours in adult male and female rats following chronic adolescent 

nicotine exposure (Figure 7A). Two-way ANOVA analysis of sociability index indicated 

main effects of sex and interaction between sex and treatment (Sex: F(1,59) = 4.275, p = 

0.0431; Treatment: F(1,59) = 0.8416, p = 0.3627; Interaction: F(1,59) = 5.843, p = 0.0187; 

Figure 7B). Post hoc Fisher’s LSD revealed that nicotine-treated male rats displayed 

lower sociability index than male vehicle group (p = 0.0227), but both female groups 

performed similarly (p = 0.2893). Nicotine-treated female rats exhibited lower sociability 

index compared to nicotine-treated male rats (p = 0.0022). For social recognition score, 

statistical analysis did not show any main effects of sex, treatment, and interaction 

between factors (Sex: F(1,60) = 1.257, p = 0.2667; Treatment: F(1,60) = 0.0572, p = 0.8118; 

Interaction: F(1,60) = 0.1773, p = 0.6752; Figure 7C). 
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Figure 6. Sex differences in depressive-like behaviours in FST following adolescent 

nicotine exposure. (A) Schematic representation of the FST apparatus. (B, C) Nicotine-

treated male rats displayed reduced climbing time and increased immobility time than 

male vehicle rats, whereas there were no significant changes between female groups (n = 

16/treatment/sex). Nicotine-treated female rats exhibited increased climbing time and 

lower immobility time compared to nicotine-treated male rats. (D) There were no 

significant differences between treatment groups in each sex in swimming time. (E) 

Nicotine-treated male rats showed lower latency to immobility than male vehicle rats, 

and both female groups performed similarly in this measure. Comparisons were made 

with two-way ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 0.01, 

****p < 0.0001, two-tailed. 
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Figure 7. Chronic adolescent nicotine exposure results in sex-specific effects in social 

avoidance behaviours. (A) Schematic representation of the SI apparatus and set-up. (B) 

Nicotine-treated male rats exhibited reduced sociability index compared to male vehicle 

rats, whereas both female groups performed similarly. Female vehicle group displayed 

decreased sociability index than male vehicle group (n = 15-16/treatment/sex). (C) There 

were no significant differences between treatment groups in each sex. Comparisons were 

made with two-way ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 

0.01, two-tailed. 
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3.1.3 Adolescent nicotine exposure induces sex-specific working 
memory deficits in adulthood 

3.1.3.1 Spontaneous Alternation Task 

Chronic adolescent nicotine exposure could lead to cognitive deficit, which is also 

one of the symptoms in anxiety and depressive disorders (Counotte et al., 2009; Li et al., 

2021; Datta et al., 2021; Penninx et al., 2021). Therefore, we first evaluated spatial 

working memory through the SA task in adult male and female rats following chronic 

adolescent nicotine exposure (Figure 8A). Two-way ANOVA analysis of total entries 

revealed main effects of sex (Sex: F(1,59) = 23.43, p   0.0001; Treatment: F(1,59) = 2.365, 

p = 0.1294; Interaction: F(1,59) = 2.117, p = 0.1510; Figure 8B). Post hoc Fisher’s LSD 

indicated that both female groups displayed higher total entries compared to their male 

vehicle and nicotine counterparts (male VEH vs. female VEH: p = 0.0209; male NIC vs. 

female NIC: p   0.0001). Nicotine-treated female rats exhibited higher total entries than 

female vehicle rats (p = 0.0401). Statistical analysis also demonstrated main effects of 

interaction between sex and treatment on alternation score (Sex: F(1,60) = 2.971, p = 

0.0899; Treatment: F(1,60) = 1.704, p = 0.1967; Interaction: F(1,60) = 4.460, p = 0.0389; 

Figure 8C). Post hoc comparisons showed that nicotine-treated male rats exhibited lower 

alternation score than male vehicle rats (p = 0.0187), but there were no significant 

differences between both female groups (p = 0.5707). Nicotine-treated female rats also 

displayed higher alternation score than nicotine-treated male rats (p = 0.0087). 

3.1.3.2 Novel Object Recognition Task 

Next, we assessed sex differences in recognition memory with NOR task 

following chronic adolescent nicotine exposure (Figure 9A). Two-way ANOVA analysis 

of recognition score revealed main effects of treatment (Sex: F(1,28) = 3.059, p = 0.0912; 

Treatment: F(1,28) = 4.319, p = 0.0470; Interaction: F(1,28) = 2.893, p = 0.1000; Figure 

9B). Post hoc Fisher’s LSD showed that nicotine-treated male rats exhibited lower 

recognition score compared to male vehicle rats (p = 0.0124), whereas both female 

groups performed similarly in this measure (p = 0.7917). Female vehicle rats also 

displayed lower recognition score than male vehicle rats (p = 0.0213).  
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3.1.3.3 Temporal Order Novel Object Recognition Task 

Last but not least, we examined the recency/temporal aspect of recognition 

memory in adult male and female rats following chronic adolescent nicotine exposure 

(Figure 10A). Two-way ANOVA analysis indicated main effects of interaction between 

sex and treatment on recognition score (Sex: F(1,57) = 0.0433, p = 0.8359; Treatment: 

F(1,57) = 3.585, p = 0.0634; Interaction: F(1,57) = 4.953, p = 0.0300; Figure 10B). Post hoc 

Fisher’s LSD demonstrated that nicotine-treated male rats exhibited lower recognition 

score than male vehicle rats (p = 0.0054), but there were no significant differences 

between female groups (p = 0.8137). 

  



45 

 

 

Figure 8. Sex-specific effects in spatial working memory following chronic 

adolescent nicotine exposure. (A) Schematic representation of the SA task apparatus. 

(B) Both female groups exhibited higher total entries compared to their male vehicle and 

nicotine counterparts. Nicotine-treated female rats also displayed increased total entries 

than female vehicle rats (n = 15-16/treatment/sex). (C) Nicotine-treated male rats 

demonstrated lower alternation score than male vehicle rats, and there were no significant 

differences between female groups. Nicotine-treated female rats had higher alternation 

score compared to nicotine-treated male rats. Comparisons were made with two-way 

ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 0.01, ****p < 0.0001, 

two-tailed.  
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Figure 9. Chronic adolescent nicotine exposure leads to sex-specific deficits in 

recognition memory. (A) Schematic representation of the NOR task apparatus. (B) 

Nicotine-treated male rats displayed lower recognition score compared to male vehicle 

rats, whereas both female groups performed similarly. Female vehicle rats also exhibited 

lower recognition score than male vehicle rats (n = 8-10/treatment/sex). Comparisons 

were made with two-way ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, 

two-tailed. 

  

A B

Male Female

0

20

40

60

80

100

NOR Recognition Score

Sex

P
e

rc
e

n
ta

g
e

(%
)

VEH

NIC

✱

✱

ANOVA table

    Interaction

    Sex

    Treatment

SS

420.0

444.1

626.9

DF

1

1

1

MS

420.0

444.1

626.9

F (DFn, DFd)

F (1, 28) = 2.893

F (1, 28) = 3.059

F (1, 28) = 4.319

P value

P=0.1000

P=0.0912

P=0.0470



47 

 

 

Figure 10. Sex-specific deficits in the temporal aspect of recognition memory 

following chronic adolescent nicotine exposure. (A) Schematic representation of the 

TONOR task apparatus. (B) Nicotine-treated male rats displayed lower recognition score 

compared to male vehicle rats, and there were no significant differences between female 

groups (n = 15-16/treatment/sex). Comparisons were made with two-way ANOVA 

followed by Fisher’s LSD post hoc test, **p < 0.01, two-tailed. 
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3.2 In-vivo Electrophysiology Results 

3.2.1 Adolescent nicotine exposure induces sex-specific 
alterations to mPFC and VTA spontaneous neuronal spiking 
activity  

3.2.1.1 Pyramidal Neurons in the mPFC 

Nicotine exposure can alter neurotransmitter dynamics in the brain involving 

glutamate and DA signaling (Le Houezec, 2003), and disrupted neurotransmission in 

these systems is commonly reported in mood and anxiety disorders (Li et al., 2021; Malhi 

& Mann, 2018; Penninx et al., 2021). For instance, hyperactive glutamate and hypoactive 

GABA signaling, as well as aberrant DA signaling have been observed in patients and 

pre-clinical studies of anxiety and depressive disorders (Bi et al., 2013; Francis et al., 

2015; Jobson et al., 2019; Hudson et al., 2021; Yildiz-Yesiloglu & Ankerst, 2006). Thus, 

following behavioural testing, we first examined sex-specific effects of chronic 

adolescent nicotine exposure on spontaneous firing activity of pyramidal (glutamatergic) 

neurons in the mPFC (Figure 11A, 11B, 11F, 11G). Two-way ANOVA analysis 

revealed main effects of treatment and interaction between factors on mPFC pyramidal 

neuron firing frequency (Sex: F(1,196) = 0.0656, p = 0.7981; Treatment: F(1,196) = 8.792, p 

= 0.0034; Interaction: F(1,196) = 7.874, p = 0.0055; Figure 11C). Post hoc Fisher’s LSD 

demonstrated that the nicotine-treated male group exhibited higher firing frequency than 

the male vehicle group (p   0.0001), but there were no significant differences between 

both female groups (p = 0.9106). The female vehicle group also displayed elevated firing 

frequency compared to the male vehicle group (p = 0.0316). Statistical analysis of burst 

events indicated main effects of treatment (Sex: F(1,194) = 1.471, p = 0.2267; Treatment: 

F(1,194) = 10.47, p = 0.0014; Interaction: F(1,194) = 1.740, p = 0.1887; Figure 11D). Post 

hoc comparisons showed that the nicotine-treated male group exhibited more burst events 

compared to the male vehicle group (p = 0.0015). No significant differences were 

observed between female treatment groups (p = 0.1769). Furthermore, analysis of burst 

frequency also revealed main effects of treatment (Sex: F(1,194) = 1.370, p = 0.2433; 

Treatment: F(1,194) = 11.31, p = 0.0009; Interaction: F(1,194) = 1.774, p = 0.1845; Figure 

11E). Post hoc comparisons demonstrated that nicotine-treated male rats displayed 
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increased burst frequency than male vehicle rats (p = 0.0011), and there were no 

significant differences between female treatment groups (p = 0.1526).  

3.2.1.2 Dopaminergic Neurons in the VTA 

Next, we investigated baseline spiking activity of VTA DA neurons in adult male 

and female rats following chronic adolescent nicotine exposure (Figure 12A, 12B, 12F, 

12G). Two-way ANOVA analysis revealed main effects of treatment and interaction 

between factors on firing frequency (Sex: F(1,178) = 0.1687, p = 0.6818; Treatment: F(1,178) 

= 18.55, p   0.0001; Interaction: F(1,178) = 19.15, p   0.0001; Figure 12C). Post hoc 

Fisher’s LSD indicated that nicotine-treated male rats exhibited higher firing frequency 

than male vehicle rats (p   0.0001), but there were no significant differences between 

both female groups (p = 0.9636). Female vehicle rats displayed increased firing 

frequency compared to male vehicle rats (p = 0.0017), whereas nicotine-treated female 

rats showed lower firing frequency than nicotine-treated male rats (p = 0.0031). 

Statistical analysis of burst events demonstrated main effects of treatment and interaction 

between factors (Sex: F(1,147) = 2.327, p = 0.1293; Treatment: F(1,147) = 6.789, p = 0.0101; 

Interaction: F(1,147) = 5.460, p = 0.0208; Figure 12D). Post hoc comparisons revealed that 

the nicotine-treated male group displayed increased burst events than the male vehicle 

group (p =  0.0002), but there were no significant differences between both female groups 

(p = 0.8593). The female vehicle group exhibited higher burst events than the male 

vehicle group as well (p =  0.0117). Moreover, analysis of burst frequency showed main 

effects of treatment and interaction between factors (Sex: F(1,147) = 2.071, p = 0.1523; 

Treatment: F(1,147) = 7.233, p = 0.0080; Interaction: F(1,147) = 5.731, p = 0.0179; Figure 

12E). Post hoc comparisons indicated that nicotine-treated male rats exhibited higher 

burst frequency than male vehicle rats (p = 0.0002), but there were no significant 

differences between female treatment groups (p = 0.8455). Female vehicle rats also 

displayed elevated burst frequency compared to male vehicle rats (p = 0.0124).  
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Figure 11. Chronic adolescent nicotine exposure results in dysregulated baseline 

spiking activity of mPFC pyramidal neuron in a sex-specific manner. (A) 

Microphotograph showing mPFC recording site with iontophoretic marking (indicated by 

white arrow); mPFC = medial prefrontal cortex, marked by red box. (B) Brain region of 

mPFC from rat brain atlas, indicated by red box. (C, D, E) Nicotine-treated male rats 

exhibited increased firing frequency, burst events, and bursting rate (n = 49-50 

cells/treatment/sex from 11 rats) of mPFC pyramidal/glutamatergic neurons compared to 

male vehicle rats. No significant differences were observed between both female groups 

in these parameters. Female vehicle rats also displayed higher firing frequency than male 

vehicle rats. (F, G) Trace patterns of representative mPFC pyramidal neurons recorded 
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from vehicle and nicotine groups in each sex. Comparisons were made with two-way 

ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 0.01, ****p < 0.0001, 

two-tailed. 
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Figure 12. Sex-specific effects of chronic adolescent nicotine exposure on baseline 

spiking activity of VTA DA neurons. (A) Microphotograph showing VTA recording 

site with iontophoretic marking (indicated by white arrow); VTA = ventral tegmental 

area, marked by red circle. (B) Brain region of VTA from rat brain atlas, indicated by red 

circle. (C, D, E) Nicotine-treated male rats exhibited increased firing frequency, burst 

events, and bursting rate (n = 25-50 cells/treatment/sex from 11 rats) of VTA DA neurons 

compared to male vehicle rats. No significant differences were observed between both 

female groups in these parameters. Female vehicle rats also displayed elevated activity in 
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these measures than male vehicle rats. (F, G) Trace patterns of representative VTA DA 

neurons recorded from vehicle and nicotine groups in each sex. Comparisons were made 

with two-way ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001, two-tailed. 
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3.2.2 Adolescent nicotine exposure leads to sex-specific disruption 
in mPFC oscillatory states 

Alterations in oscillatory states in the brain have been reported following chronic 

adolescent nicotine exposure, as well as in patients with anxiety, depression, and 

cognitive deficits (Hudson et al., 2021; Oathes et al., 2008; Adhikari et al., 2010; 

Meerwijk et al., 2015; Grünewald et al., 2018; Proskovec et al., 2018). Hence, we 

examined mPFC oscillatory states with LFP signals in adult male and female rats 

following chronic adolescent nicotine exposure (Figure 13A, 13B, 13C). Two-way 

ANOVA analysis revealed main effects of sex and interaction between factors on delta 

wave activity (Sex: F(1,193) = 32.09, p  0.0001; Treatment: F(1,193) = 1.487, p = 0.2242; 

Interaction: F(1,193) = 8.912, p = 0.0032; Figure 13D). Post hoc Fisher’s LSD indicated 

that nicotine-treated male rats exhibited decreased delta activity compared to male 

vehicle rats (p = 0.0027), but no significant differences between female treatment groups 

(p = 0.2235). Female vehicle rats also displayed reduced delta activity compared to male 

vehicle rats (p  0.0001). Statistical analysis of theta activity demonstrated main effects 

of sex and interaction between factors Sex: F(1,194) = 24.34, p  0.0001; Treatment: F(1,194) 

= 3.391, p = 0.0671; Interaction: F(1,194) = 9.179, p = 0.0028; Figure 13E). Post hoc 

comparisons indicated that nicotine-treated male rats exhibited increased theta activity 

compared to male vehicle rats (p = 0.0005), but no significant differences between female 

treatment groups (p = 0.4131). Female vehicle rats also displayed elevated theta activity 

than male vehicle rats (p  0.0001). Furthermore, analysis of alpha activity demonstrated 

main effects of sex, treatment, and interaction between factors (Sex: F(1,183) = 23.00, p  

0.0001; Treatment: F(1,183) = 10.03, p = 0.0018; Interaction: F(1,183) = 5.563, p = 0.0194; 

Figure 13F). Post hoc comparisons showed that nicotine-treated male rats exhibited 

increased alpha activity compared to male vehicle rats (p  0.0001), but no significant 

differences between female treatment groups (p = 0.5855). Female vehicle rats also 

displayed elevated alpha activity than male vehicle rats (p  0.0001). Analysis of beta 

activity revealed main effects of sex (Sex: F(1,191) = 14.54, p =  0.0002; Treatment: F(1,191) 

= 1.887, p = 0.1712; Interaction: F(1,191) = 2.056, p = 0.1533; Figure 13G). Post hoc 

comparisons showed that nicotine-treated male rats exhibited increased beta activity 

compared to male vehicle rats (p = 0.0444), but no significant differences between female 



55 

 

treatment groups (p = 0.9667). Female vehicle rats also displayed elevated beta activity 

than male vehicle rats (p = 0.0001). Last but not least, analysis of gamma activity showed 

main effects of sex (Sex: F(1,193) = 43.24, p  0.0001; Treatment: F(1,193) = 1.098, p = 

0.2961; Interaction: F(1,193) = 3.129, p = 0.0785; Figure 13H). Post hoc comparisons 

demonstrated that nicotine-treated male rats exhibited increased gamma activity 

compared to male vehicle rats (p = 0.0428), but no significant differences between female 

treatment groups (p = 0.6186). Female vehicle and nicotine-treated rats also displayed 

elevated gamma activity than their male counterparts respectively (male VEH vs. female 

VEH: p  0.0001; male NIC vs. female NIC: p = 0.0015).  
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Figure 13. Sex differences in spontaneous mPFC oscillations in adulthood following 

chronic adolescence nicotine exposure. (A) Representative spectrogram of a 5-min 
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recording in mPFC. (B, C) Average normalized LFP power spectra in the mPFC between 

vehicle vs nicotine groups in each sex. (D, E F, G, H) Nicotine-treated male rats 

experienced a decrease in delta (0-4 Hz) oscillations but increases in theta (4-7 Hz), alpha 

(7-14 Hz), beta (14-30 Hz), and gamma oscillations (30-80 Hz) compared to the male 

vehicle rats, but no significant differences were observed between both female groups (n 

= 42-58 recording/treatment/sex from 11 rats). The female vehicle group exhibited 

decreased delta activity, but increased theta, alpha, beta and gamma activity compared to 

the male vehicle group. Nicotine-treated female rats also displayed elevated gamma 

oscillation than nicotine-treated male rats. Comparisons were made with two-way 

ANOVA followed by Fisher’s LSD post hoc test, *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001, two-tailed.  
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3.3 Tissue Molecular Analysis Results 

3.3.1 Western Blots 

Since nicotine exposure affects neurotransmission in the mesocorticolimbic 

system, and changes in neurotransmitter dynamics are shown to be associated with 

anxiety and depressive disorders (Le Houezec, 2003; Li et al., 2021; Malhi & Mann, 

2018; Penninx et al., 2021), we also investigated protein expression levels in the mPFC 

and NAc of selected molecular targets relevant to nicotine exposure and neuropsychiatric 

disorders. 

3.3.1.1 mPFC molecular targets 

First, we assessed expression levels of 7 and 2 nAChR in the mPFC, which 

have been reported to play a role in attention, learning and working memory (Dalley et 

al., 2001; Hahn et al., 2003; McIntyre et al., 2013). Western blot analysis revealed that 

nicotine-treated male rats experienced reduction in 7 and 2 nAChR levels in the mPFC 

compared to male vehicle rats (7: U = 10.00, p = 0.0016; 2: U = 10.00, p = 0.0400; 

Figure 14B, 14C), but there were no significant differences between female treatment 

groups (7: U = 46.00, p = 0.7959; 2: U = 23.00, p = 0.9015; Figure 14B, 14C).  

Next, we examined VGLUT1 and GAD65 levels in the mPFC, since dysregulated 

E/I balance in the mPFC has been indicated to be involved in anxiety and depressive 

disorders (Veeraiah et al., 2014; Czéh et al., 2018; Arnone et al., 2015; Jobson et al., 

2019; Bi et al., 2013; Yildiz-Yesiloglu & Ankerst, 2006). Statistical analysis indicated no 

significant differences in VGLUT1 levels between treatment groups in each sex (male: U 

= 20.00, p = 0.6200; female: U = 24.00, p = 0.4418; Figure 15B). However, nicotine-

treated male rats exhibited reduced GAD65 level in the mPFC compared to male vehicle 

rats (U = 10.00, p = 0.0401; Figure 15C), whereas nicotine-treated female rats displayed 

increased GAD65 level than female vehicle rats (U = 11.00, p = 0.0152; Figure 15C).  

D1R and D2R in the mPFC have been reported to be involved in cognitive 

function and regulation of E/I balance (Floresco & Magyar, 2006; Seamans & Yang, 

2004; Sawaguchi and Goldman-Rakic, 1994; Abi-Dargham et al., 2002; Li et al., 2011; 
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Robinson & Sohal, 2017). Therefore, we next investigated expression levels of D1R and 

D2R in the mPFC. Western blot analysis demonstrated that nicotine-treated male rats 

showed decreased D1R level in the mPFC compared to male vehicle rats (U = 7.00, p = 

0.0262; Figure 16B), whereas nicotine-treated female rats exhibited increased D1R level 

than female vehicle rats (U = 5.00, p = 0.0111; Figure 16B). For D2R, nicotine-treated 

male rats displayed higher D2R level in the mPFC than male vehicle rats (U = 4.00, p = 

0.0070; Figure 16C), whereas nicotine-treated female rats experienced reduced D2R 

level compared to female vehicle rats (U = 5.00, p = 0.0221; Figure 16C).  

BDNF is involved in synaptic plasticity and integrity, and aberration in BDNF 

levels in the brain has been demonstrated in pre-clinical and clinical studies of mood and 

anxiety disorders (Minichiello et al., 2002; Panja et al., 2014; Bosch et al., 2014; Ji et al., 

2010; Karege et al., 2005; Monteggia et al., 2007; Lindholm and Castrén, 2014). Thus, 

we also examined expression level of BDNF in the mPFC. Statistical analysis revealed 

that nicotine-treated male rats displayed lower BDNF level in the mPFC than male 

vehicle rats (U = 0.00, p = 0.0012; Figure 17B), whereas nicotine-treated female rats 

showed elevated BDNF level than female vehicle rats (U = 14.00, p = 0.0101; Figure 

17B).  

3.3.1.2 NAc Molecular Targets 

In the NAc, we first examined expression levels of D1R and D2R, which have 

been demonstrated to be involved in motivation and reward learning behaviours (Hikida 

et al., 2010; Kravitz et al., 2012; Francis et al., 2015; Soares-Cunha et al., 2020). Deficits 

in these behaviours are often observed in depressive disorders (Li et al., 2021; Datta et 

al., 2021). Western blot analysis revealed that nicotine-treated male rats exhibited lower 

D1R level in the NAc than male vehicle rats (U = 1.00, p = 0.0013; Figure 18B), 

whereas nicotine-treated female rats displayed higher D1R level compared to female 

vehicle rats (U = 6.00, p = 0.0175; Figure 18B). For D2R, nicotine-treated male rats 

experienced increased D2R level in the NAc than male vehicle rats (U = 11.00, p = 

0.0152; Figure 18C), whereas nicotine-treated female rats showed decreased D2R level 

compared to female vehicle rats (U = 5.00, p = 0.0221; Figure 18C).  
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Next, we investigated GAD65 level in the NAc, as GABA signaling in the NAc 

has been reported to modulate VTA DA release (Yang et al., 2018). Statistical analysis 

indicated that nicotine-treated male rats exhibited lower GAD65 level in the NAc 

compared to male VEH group (U = 6.00, p = 0.0350; Figure 19B), whereas there were 

no significant differences between female groups (U = 24.00, p = 0.4418; Figure 19B). 

Last but not least, BDNF signaling in the NAc has been suggested to play a role 

in depressive disorders (Berton et al., 2006; Eisch et al., 2003; Krishnan et al., 2007; 

Taliaz et al., 2013). Thus, we last examined BDNF level in the NAc. Statistical analysis 

demonstrated that nicotine-treated male rats exhibited elevated BDNF level in the NAc 

than male vehicle rats (U = 4.00, p = 0.0080; Figure 20B), whereas nicotine-treated 

female rats experienced lower BDNF level compared to female vehicle rats (U = 5.00, p 

= 0.0411; Figure 20B).  

3.4 Estrous Cycle Assessment 

To investigate whether different stages of the estrous cycle exerted any effects on 

behavioural and electrophysiological outcomes, we attempted to collect vaginal samples 

and characterize estrous cycle stages for individual female rats. However, due to several 

technical difficulties and limitations, we could not establish a relationship between the 

estrous cycle and these corresponding experimental outcomes. Please refer to 

“Limitations” of the discussion section for further explanations.  
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Figure 14. Chronic adolescent nicotine exposure induces sex-specific alterations in 

mPFC 7 and 2 nAChR expression levels. (A) Schematic representation of mPFC 

tissue punchout regions for molecular analyses. (B, C) Top: Representative western blots 

for 7 nAChR and 2 nAChR in the mPFC. Bottom: Densitometry analysis of protein 

expression levels between VEH and NIC groups in each sex. Nicotine-treated male rats 

experienced a reduction in 7 and 2 nAChR levels compared to male VEH group, 

whereas there were no significant differences between female groups (n = 7-

11/treatment/sex). Within-group comparisons were made with Mann-Whitney U test, *p 

< 0.05, **p < 0.01. 
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Figure 15. Sex differences in mPFC VGLUT1 and GAD65 levels following chronic 

adolescent nicotine exposure. (A) Schematic representation of mPFC tissue punchout 

regions for molecular analyses. (B, C) Top: Representative western blots for VGLUT1 

and GAD65 in the mPFC. Bottom: Densitometry analysis of protein expression levels 

between VEH and NIC groups in each sex. (B) There were no significant differences in 

mPFC VGLUT1 levels between treatment groups in each sex. (n = 7-8/treatment/sex). 

(C) Nicotine-treated male rats exhibited lower GAD65 level in the mPFC compared to 

male vehicle rats, whereas nicotine-treated female rats displayed higher GAD65 level 

than female vehicle rats (n = 7-9/treatment/sex). Within-group comparisons were made 

with Mann-Whitney U test, *p < 0.05. 
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Figure 16. Chronic adolescent nicotine exposure leads to sex-specific changes in D1R 

and D2R expression levels in the mPFC. (A) Schematic representation of mPFC tissue 

punchout regions for molecular analyses. (B, C) Top: Representative western blots for 

D1R and D2R in the mPFC. Bottom: Densitometry analysis of protein expression levels 

between VEH and NIC groups in each sex. (B) Nicotine-treated male rats displayed 

lower D1R level in the mPFC than male vehicle rats, whereas nicotine-treated female rats 

displayed higher D1R level compared to female vehicle rats (n = 7/treatment/sex). (C) 

Nicotine-treated male rats experienced increased D2R level in the mPFC than male 

vehicle rats, whereas nicotine-treated female rats showed lower D2R level compared to 

female vehicle rats (n = 7-8/treatment/sex). Within-group comparisons were made with 

Mann-Whitney U test, *p < 0.05, **p < 0.01. 
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Figure 17. Sex-specific alterations in mPFC BDNF level following chronic 

adolescent nicotine exposure. (A) Schematic representation of mPFC tissue punchout 

regions for molecular analyses. (B) Top: Representative western blots for BDNF in the 

mPFC. Bottom: Densitometry analysis of protein expression levels between VEH and 

NIC groups in each sex. Nicotine-treated male rats exhibited lower BDNF level in the 

mPFC than male vehicle rats, whereas nicotine-treated female rats showed increased 

BDNF level compared to female vehicle rats (n = 6-10/treatment/sex). Within-group 

comparisons were made with Mann-Whitney U test, *p < 0.05, **p < 0.01. 

  



65 

 

 

Figure 18. Chronic adolescent nicotine exposure induces sex-specific changes in D1R 

and D2R expression levels in the NAc. (A) Schematic representation of NAc tissue 

punchout regions for molecular analyses. (B, C) Top: Representative western blots for 

D1R and D2R in the NAc. Bottom: Densitometry analysis of protein expression levels 

between VEH and NIC groups in each sex. (B) Nicotine-treated male rats exhibited 

decreased D1R level in the NAc than male vehicle rats, whereas nicotine-treated female 

rats displayed higher D1R level compared to female vehicle rats (n = 6-8/treatment/sex). 

(C) Nicotine-treated male rats experienced increased D2R level in the NAc than male 

vehicle rats, whereas nicotine-treated female rats showed lower D2R level compared to 

female vehicle rats (n = 6-9/treatment/sex). Within-group comparisons were made with 

Mann-Whitney U test, *p < 0.05, **p < 0.01. 
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Figure 19. Sex-specific alterations in NAc GAD65 level following chronic adolescent 

nicotine exposure. (A) Schematic representation of NAc tissue punchout regions for 

molecular analyses. (B) Top: Representative western blots for GAD65 in the NAc. 

Bottom: Densitometry analysis of protein expression levels between VEH and NIC 

groups in each sex. Nicotine-treated male rats experienced reduced GAD65 level in the 

NAc compared to male VEH group, whereas there were no significant differences 

between female groups (n = 6-8/treatment/sex). Within-group comparisons were made 

with Mann-Whitney U test, *p < 0.05.  
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Figure 20. Chronic adolescent nicotine exposure results in sex-specific changes in 

BDNF expression level in the NAc. (A) Schematic representation of NAc tissue 

punchout regions for molecular analyses. (B) Top: Representative western blots for 

BDNF in the NAc. Bottom: Densitometry analysis of protein expression levels between 

VEH and NIC groups in each sex. Nicotine-treated male rats experienced elevated BDNF 

level in the NAc than male vehicle rats, whereas nicotine-treated female rats displayed 

decreased BDNF level compared to female vehicle rats (n = 6-8/treatment/sex). Within-

group comparisons were made with Mann-Whitney U test, *p < 0.05, **p < 0.01. 
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Chapter 4  

4 Discussion and Future Directions 

The use of e-cigarettes among adolescents is currently rising, which presents a 

notable concern as the adolescent brain is highly vulnerable to the effects of psychotropic 

drug exposure. Clinical links between nicotine dependence and comorbidity with 

mood/anxiety disorders have been well-established (Martínez-Ortegaa et al., 2017; Boden 

et al., 2010; Moran et al., 2013; Sagud et al., 2019). Sex-specific trends in smoking 

behaviours and responses to nicotine replacement therapies have been reported as well 

(McLean et al., 2011; Ford & Erlinger, 2004; Torres & O’Dell, 2016; Perkins, 2001; 

Costello et al., 2011; Perkins et al., 1999; Barrett, 2010). The prevalence of mood and 

anxiety disorders is higher in female compared to male, and females experience greater 

difficulty in quitting nicotine products, as well as lower success with smoking cessation 

treatments. However, there remains a paucity in pre-clinical studies exploring how male 

and female respond differently to nicotine exposure. Sex-specific effects of adolescent 

nicotine exposure on the mesocorticolimbic system are also currently unclear in terms of 

behavioural, neuronal, and molecular outcomes. Hence, the present study examined sex 

differences in anxiety and depressive-related outcomes during adulthood following 

adolescent nicotine exposure.  

In line with previous findings (Jobson et al., 2019; Hudson et al., 2021), we 

reported that nicotine-treated male rats displayed a host of anxiety and depressive-like 

behaviours, as well as spatial and recognition memory cognitive deficits. Importantly, 

these deficits were observed in early adulthood, underscoring the severity and endurance 

of these neurodevelopmentally-induced pathologies. In addition, they exhibited 

hyperactivity in spontaneous spiking events of pyramidal neurons and DA neurons in the 

mPFC and VTA respectively. Long-lasting alterations in mPFC baseline oscillation states 

were also observed in adult male rats following adolescent nicotine exposure. Last but 

not least, they experienced long-term changes in anxiety and depressive-related 

molecular markers in the mPFC and NAc. On the contrary, nicotine-exposed female 

cohorts did not demonstrate behavioural and neuronal abnormalities overall, but they 
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instead often exhibited opposing trends in several molecular targets compared to 

nicotine-treated male rats, indicative of potential compensatory interactions between 

estrogen/progesterone signaling pathways and the mesocorticolimic system, in response 

to chronic adolescent nicotine exposure. 

4.1 Dysregulated Excitatory/Inhibitory Balance in Anxiety 
and Depressive Disorders 

The anxiety and depressive-related phenotypes observed in the nicotine-treated 

male groups are consistent with previous reports, including reduced open arm time, 

central zone time, social motivation, cognitive deficits and increased immobility time 

(Jobson et al., 2019; Hudson et al., 2021; Counotte et al., 2011; Counotte et al., 2009). 

These anxiety and depressive-like behaviours were also accompanied by increases in 

baseline neuronal firing activity in the mPFC and VTA. Dysregulation of E/I balance in 

the PFC has been implicated in pre-clinical and clinical studies of anxiety and depression 

(Bi et al., 2013; Veeraiah et al., 2014; Czéh et al., 2018; Ghosal et al., 2017; Lener et al., 

2017). For instance, Bi et al. (2013) reported that infusion of GABA-A receptor 

antagonist, bicuculine, into the IL region of the mPFC resulted in anxiety-like behaviours 

in adult male mice, including reduced center time in OFT and decreased open-arm 

exploration time in the EPM. This behavioural change was followed by smaller IPSCs 

and larger EPSCs in pyramidal neurons in the IL cortex, suggesting the role of mPFC 

imbalanced E/I level in anxiety-related behaviours. This proposition seems plausible 

given the connectivity between the IL cortex, limbic regions (e.g., NAc, amygdala) and 

the HPA axis in response to emotional stress (Radley et al., 2006; Bi et al., 2013; Page & 

Coutellier, 2019).  

Apart from anxiety, aberrant glutamate and GABA neurotransmissions in the PFC 

are found in patients with MDD. Proton magnetic resonance spectroscopy revealed lower 

glutamate and GABA level in the DLPFC in MDD patients (Yildiz-Yesiloglu & Ankerst, 

2006), a cortical region functionally homologous to the mPFC in rodent (Uylings et al., 

2003). Arnone et al. (2015) also reported an association between decreased GABA levels 

and number of failed antidepressant treatments, which is a proxy for chronicity and 

severity of depressive illness course. Furthermore, dysregulations in glutamate and 
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GABA signaling have been shown in chronic stress and social defeat male rodent models 

of depression (Veeraiah et al., 2014; Czéh et al., 2018). Altogether, these results appear to 

be consistent with our findings, where we observed hyperactive mPFC pyramidal neurons 

and reduced mPFC GAD65 levels in the nicotine-treated male group, further implicating 

the involvement of PFC E/I balance in anxiety and depression-related behaviours. 

4.2 Role of D1R and D2R in the PFC 

Besides evidence for abnormal glutamate vs GABA balance in the mPFC, we 

observed significant changes in D1R and D2R levels, with a decrease in D1R but an 

increase in D2R level in nicotine-exposed male rats. Previous studies have indicated the 

role of these receptors in cognitive function and modulation of E/I balance in the mPFC 

(Floresco & Magyar, 2006; Seamans & Yang, 2004; Sawaguchi and Goldman-Rakic, 

1994; Abi-Dargham et al., 2002; Li et al., 2011; Robinson & Sohal, 2017). For example, 

Sawaguchi and Goldman-Rakic (1994) performed local administration of D1R 

antagonist, such as SCH 23390 or SCH 39166, into the DLPFC of rhesus monkeys and 

reported pronounced deficits in an oculomotor delayed response task (for working 

memory). Other pharmacological studies have also demonstrated that blockade of D1R 

and D2Rs in the mPFC impaired performances in attention set-shifting tasks (Ragozzino, 

2002; Floresco et al., 2006), suggesting a cooperative interaction between D1R and D2R 

that underlie behavioural flexibility in the PFC. Furthermore, D2R activation has been 

shown to enhance the excitability of mPFC pyramidal neurons through a stimulatory G-

protein pathway (Robinson & Sohal, 2017). Thus, changes in D1R and D2R expression 

levels in the mPFC could be associated with the cognitive deficits and neuronal 

dysregulation observed in nicotine-exposed male rats. Nevertheless, future studies are 

required to further investigate the dynamics between DA signaling and glutamatergic 

activity in the PFC, as well as the connectivity between PFC and Hipp, provided the role 

of Hipp in learning and memory (Anand & Dhikav, 2012; Bird & Burgess, 2008). 

4.3 Role of PFC 7 and 2 nAChR in Cognitive Function 

 The mPFC is involved in various cognitive processes, including goal-directed 

behaviours, working memory, and attention (Bloem et al., 2014). In particular, the 
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cholinergic system and nAChRs in the mPFC play a crucial role in attention and learning 

(Dalley et al., 2001; Hahn et al., 2003), specifically the 7 and 2 nAChRs (Valentine & 

Sofuoglu, 2018; Hoyle et al., 2006). Fernandes et al. (2006) reported that 7 nAChRs 

knockout male mice displayed worse performances in the delayed matching-to-place task 

of the Morris water maze, and stimulation of these receptors enhanced persistent neuronal 

firing of NMDAR-mediated/working memory-related circuits in the DLPFC (Yang et al., 

2013). For 2-subunit, Guillem et al. (2011) demonstrated that 2 knockout male mice 

exhibited impaired attentional performance, and re-expression of 2 nAChRs in the PL 

region of the mPFC was sufficient to reverse the attentional deficits in these mice. Thus, 

reduction in both 7 and 2 nAChR expression levels in the mPFC could underlie the 

cognitive deficits in nicotine-exposed male rats, considering their established role in 

learning and attentional processing. In addition, the sensitivity of nAChRs varies across 

sub-units. For example, low-sensitivity 7-nAChRs are involved in modulating 

glutamate signaling and they desensitize slower than non-7 subtypes that regulate 

GABA release (Mansvelder et al., 2009). This differential sensitivity in nAChR subtypes 

could result in greater glutamate vs GABA signaling following prolonged nicotine 

exposure, which could potentially be linked to the E/I imbalance seen in the nicotine-

treated male group. Further investigations are necessary to study the role of 7 and 2 

nAChR in cognitive ability following chronic adolescent nicotine exposure.  

4.4 Brain Oscillation Activity in Anxiety and Depressive 
Disorders 

Local field potentials (LFP) are the electric potentials generated from transient 

dipoles existing across the extracellular and intracellular space of neurons. These 

extracellular electric potentials change over time based on neuronal activity states, and 

form different wave or oscillatory patterns. Thus, LFP signals are thought to represent the 

aggregate changes in extracellular electric potentials of local populations of neurons, and 

they can be decomposed down to different frequencies of oscillations during analysis 

(Einevoll et al., 2013; Maling & McIntyre; 2016). Changes in oscillation states across 

various frequencies have been reported in patients with anxiety, depression and cognitive 

deficits. For example, higher levels of gamma activity were exhibited by patients with 
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general anxiety disorder during worry induction tasks, which were also negatively 

correlated with subjective emotional experience immediately following the task (Oathes 

et al., 2008). In a male mouse model of anxiety, theta activities and synchronization 

between the mPFC and the ventral hippocampus were also increased in the OFT and 

EPM, and the increase in mPFC theta oscillation was associated with inhibition of 

exploratory behaviours in both arenas (Adhikari et al., 2010). In addition, reduced delta 

activity was correlated with psychological pain in adults with a history of depression 

(Meerwijk et al., 2015). Grünewald et al. (2018) also reported contralateral asymmetry in 

resting frontal alpha oscillation in adolescents with unipolar depression. In another study, 

elevated beta activity was shown to be correlated with poorer performance in a spatial 

working memory task (Proskovec et al., 2018). Overall, we observed widespread 

alterations in mPFC oscillation states across different frequencies, including decreased 

delta activity, and increased theta, alpha, beta, gamma activity, which appears to be 

consistent with previous findings and possibly correlated with behavioural deficits 

displayed by the nicotine-treated male group. Nonetheless, most of these findings are 

associative in nature. Thus, caution should be taken when drawing mechanistic inferences 

for the roles of these patterns in the observed phenotypes. Future studies, perhaps 

employing awake neuronal recordings during behavioural tasks may be able to more 

precisely link these aberrant patterns with specific affective and/or cognitive task 

outcomes. 

4.5 BDNF and Depressive Disorders 

In recent years, BDNF has been a central point of discussion in terms of 

understanding the etiology of mood disorders, particularly due to its functional role in 

neurogenesis and synaptic plasticity in the CNS (Yang et al., 2020). BDNF is an 

upstream signaling molecule that binds to TrkB, and activates various downstream 

signaling cascades, including the Ras-mitogen-activated protein kinase (MAPK) 

pathway, the phosphatidylinositide 3-kinase-protein kinase B (PI3K-Akt) pathway and 

the PLC-Ca2+ pathway to carry out their corresponding function (Leal et al., 2017). For 

example, BDNF-TrkB signaling mediates LTP in the hippocampus through the 

recruitment of PLC, and the consolidation of LTP at hippocampal synapses requires 
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prolonged BDNF-TrkB signaling (Minichiello et al., 2002; Panja et al., 2014). BDNF 

was also shown to be involved in the increase of spine density of CA1 pyramidal neurons 

via the MAPK-extracellular signal-regulated protein kinase (ERK) pathway (Alonso et 

al., 2004). Furthermore, the effects of BDNF extend to the structural integrity of synapses 

as well, via its interaction with local cytoskeletal-related proteins (Bosch et al., 2014). 

Different downstream cellular responses also depend on the temporal aspect of BDNF-

TrkB signaling, where transient BDNF-TrkB activation facilitates neurite elongation and 

spine head enlargement; and sustained activation promotes neurite branching and spine 

neck elongation (Ji et al., 2010). Besides synaptic plasticity and integrity, studies have 

reported that BDNF could stimulate neural progenitor cells proliferation and promote cell 

survival (Katoh-Semba et al., 2002; Sairanen et al., 2005; Scharfman et al., 2005). 

Overall, BDNF appears to be an upstream regulator of various cellular functions in the 

CNS.  

In depressive disorders, dysfunction in neural plasticity, which can be defined as 

the capability of neuronal adaptation (e.g., generation of new cells) in response to a 

changing environment (Duman et al., 1999), has been proposed to be one of the 

underlying etiological mechanisms. Following exposure to environmental stressors, 

intracellular signaling cascades in brain circuitries are activated, and such signal 

transduction pathways have been shown to play a key role in modulating neuronal 

atrophy, neurogenesis and synaptic plasticity (Jeon & Kim, 2016). In the case of mood 

disorders, these signaling cascades are thought to be disrupted. Studies have 

demonstrated that negative stress and adverse experiences can result in significantly 

decreased proliferation of granule cells in the hippocampus, which could disrupt the 

process of memory formation and learning (Duman et al., 1999; Colla et al., 2007). 

Indeed, patients with MDD often experience reduced volume in regions of the 

mesocorticolimbic circuitry as well, such as the dorsal and ventral mPFC, the 

hippocampus and the amygdala (Yu & Chen, 2011; Belleau et al., 2019; McKinnon et al., 

2009; Videbech & Ravnkilde, 2004; Wise et al., 2017; Treadway et al., 2015). This 

reduction in volume is thought to be associated with neuronal atrophy and the loss of 

synaptic integrity. Repeated stress could also reduce the dendritic complexity of PFC and 

hippocampal neurons (Radley et al., 2006a,b), and a decrease in synapse number in the 
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PFC has been shown in subjects with MDD (Kang et al., 2012). In addition, sub-

anaesthetic dose of ketamine, which is an antagonist of NMDAR and plays a pivotal role 

in synaptic plasticity, can produce rapid antidepressant effects in patients with treatment-

resistant depression (Berman et al., 2000; Zarate et al., 2006). Chronic administration of 

typical antidepressants can also enhance synaptic plasticity at several levels, by 

increasing neuronal proliferation in the hippocampus, upregulating neurotrophic factor 

expression, and increasing synapse formation (Castrén & Hen, 2013; Krishnan & Nestler, 

2010; Duman & Aghajanian, 2012). Taken together, increasing evidence is pointing 

towards the involvement of disrupted neurogenesis and synaptic structure/plasticity in the 

pathology of depression. 

Given the role of BDNF in neurogenesis and synaptic plasticity, it seems 

plausible that alterations in BDNF expression levels could be associated with disrupted 

synaptic integrity in depression pathophysiology. Post-mortem studies in humans have 

reported lower BDNF level in the PFC of suicide patients (Karege et al., 2005), and 

repeated stress in adult male rats led to dendritic shortening and decreased BDNF level in 

the mPFC (Brown et al., 2005). Male mice with the loss of BDNF expression in forebrain 

regions also displayed depressive-like behaviours (Monteggia et al., 2007; Lindholm and 

Castrén, 2014). Antidepressant drugs have been demonstrated to increase BDNF mRNA 

levels in the PFC after several days of treatment (Kozisek et al., 2008). Moreover, BDNF 

microinfusion into the mPFC also produced antidepressant effects, whereas anti-BDNF 

neutralizing antibody in the mPFC suppressed the antidepressant effect of ketamine (Kato 

et al., 2018). Altogether, these findings allude to the point that the therapeutic effects of 

antidepressant on synaptic plasticity in the PFC could be dependent on BDNF signaling 

to a certain extent. 

On the other hand, BDNF signaling in the mesolimbic circuitry appears to have 

the opposite, pro-depressant effect. The VTA→NAc DA circuitry plays a critical role in 

drug addiction as well as motivation and reinforcing behaviours (Berhow et al. 1995; 

Supekar et al., 2018; Papakostas, 2020; Miyanishi & Nitta, 2021). Hence, abnormalities 

in the mesolimbic DA pathway are thought to be involved in anhedonia, a central feature 

of mania and depression (Nestler & Carlezon, 2006; Nestler, 2015; Nestler et al., 2002). 
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In contrast to the antidepressant effects of BDNF in the PFC, Berton et al. (2006) 

reported that local BDNF infusion in the VTA exerts depressive-like effects in the FST, 

where ablation of BDNF in the NAc induced antidepressant effects in the social defeat 

paradigm (Berton et al., 2006; Eisch et al., 2003). Clinical studies have also showed 

increased BDNF protein levels in the NAc of depressed patients, and reduction of BDNF 

expression in the VTA produced antidepressant effects (Krishnan et al., 2007; Taliaz et 

al., 2013). However, the precise mechanisms behind this opposite effect of BDNF in the 

NAc are currently unknown. Future studies are necessary to further investigate this 

relationship. 

Overall, these data seem to be consistent with our findings in the nicotine-treated 

male group, with depressive-like behaviours in the FST and sociability test, as well as 

lower BDNF level in the mPFC and higher BDNF level in the NAc, suggesting regional-

specific effects of BDNF in pathogenesis of depressive disorders. 

4.6 Striatal Dopaminergic Circuitry in Depressive Disorders 
and Addiction 

As mentioned previously, the VTA→NAc pathway is heavily involved in 

addiction and motivation-related behaviours (Berhow et al. 1995; Supekar et al., 2018; 

Papakostas, 2020). In the current study, we observed an increase in VTA DA neuron 

spontaneous firing activity in the nicotine-exposed male rats, which appears to be 

consistent with pre-clinical social defeat models of depression (Chaudhury et al., 2013; 

Yorgason et al., 2013) and previously observed following adolescent nicotine exposure 

(Jobson et al., 2018) and delta-9-tetrahydrocannabinol exposure (Renard et al., 2017a). 

Previous evidence has shown that optogenetic activation of VTA→NAc DA neurons 

rapidly induced depressive-like phenotypes in stress-resilient male mice; and inhibition of 

these neurons promoted resilience, whereas inhibition of VTA→mPFC DA projection 

induced susceptibility (Chaudhury et al., 2013), indicating pathway-specific function of 

DA neurons underlying depressive-like behaviours. Clinical studies have also 

demonstrated that lower striatal response to happy stimuli was positively correlated to 

higher level of anhedonia in depression, whereas increased striatal activity was seen in 

mania (Keedwell et al., 2005). Furthermore, in this study, lower D1R and higher D2R 
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level were observed in the nicotine-treated male group, where the nicotine-treated female 

group displayed opposite trends. Various reports have suggested distinctive roles of NAc 

D1R and D2R in anxiety/depressive-like behaviours and reward/aversive learning 

(Hikida et al., 2010; Kravitz et al., 2012; Francis et al., 2015; Soares-Cunha et al., 2020). 

For instance, Francis et al. (2015) utilized chemogenetic approach to inhibit NAc D1R-

MSNs and observed depressive-like behaviours in resilient male mice in a chronic social 

defeat stress model. They also reported optogenetic activation of NAc D1R-MSNs 

reversed these depressive-like behaviours. In contrast, repeated activation of NAc D2R-

MSNs induced social avoidance in this model. On the other hand, D1R and D2R appears 

to serve discrete roles in reinforcement and punishment as well. Reinforcement increases 

the frequency of a behaviour, while punishment decreases the frequency of specific 

behaviours (Kravitz et al., 2012). For example, Lobo et al. (2010) reported that 

optogenetic stimulation of NAc D1R-MSNs enhanced cocaine preference in a CPP 

paradigm, whereas activation of NAc D2R-MSNs suppressed this conditioned behaviour. 

Taken together, these findings are hinting at the interactions between NAc D1R and D2R 

behind different anxiety/depressive-like behaviours and reinforcing behaviours. Over-

expression of D2Rs in the striatum has also been shown to increase EPSCs and decrease 

IPSCs in mPFC pyramidal neurons (Bi et al., 2013). Finally, our lab has reported 

previously that acute pharmacological blockade of DA receptors in the NAc can actually 

switch nicotine aversion into reward signals (Laviolette et al., 2008). This might suggest 

that chronic adolescent nicotine exposure might lead to long-term overstimulation of 

NAc DA receptors and subsequent downregulation of NAc DA receptors, as we report 

specifically for D1R levels in the present thesis. In turn, this state of intra-NAc D1R 

downregulation may ultimately lead to a pathological increase in nicotine’s appetitive 

properties, similar to the effects of acute DA receptor antagonist blockade (Laviolette and 

van der Kooy, 2003; Laviolette et al., 2008) which could further worsen nicotine 

dependence into adulthood. Overall, these aberrations in the VTA→NAc mesolimbic DA 

pathway could underlie the behavioural, electrophysiological and molecular deficits 

observed in nicotine-exposed male rats in this study. Nonetheless, future studies are 

needed to further examine the roles of NAc D1R and D2R in the current adolescent 
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nicotine exposure model, and investigate downstream molecular signaling cascades 

behind these depressive-related phenotypes. 

In the NAc, GABAergic MSNs expressing D1R project to the VTA and innervate 

local DA neurons (Van Bockstaele & Pickel, 1995; Yang et al., 2018). These GABAergic 

neurons have also been shown to directly regulate DA neurotransmission in the VTA by 

exerting inhibitory control over local DA neurons (Yang et al., 2018). Moreover, 

decreased GABA release from these neurons has been associated with depressive-like 

behaviours in pre-clinical rodent models (Zhu et al., 2017; Francis et al., 2015).  In the 

present study, reduction in GAD65 expression level in the NAc was observed in nicotine-

treated male rats, which possibly indicates the loss of local inhibitory control over VTA 

DA signaling. This seems to be in line with previous findings, as well as the hyperactivity 

in VTA DA neuron spiking events, and depressive-like behaviours experienced by the 

nicotine-treated male group. However, future investigations are still necessary to examine 

the mechanisms behind GABAergic signaling in the NAc and the connection to 

depression etiology. 

4.7 Sex-Specific Responses to Nicotine Exposure 

Nevertheless, despite the widespread aberrations in anxiety and depressive-related 

outcomes in the nicotine-treated male cohorts, no significant differences were observed 

within or across female treatment groups, apart from several opposing trends in GAD65, 

D1R, D2R, and BDNF expression levels. Here, we propose several possible explanations 

behind these sex-specific outcomes. First, female rats might exhibit lower sensitivity to 

the pharmacological effects of nicotine than male rats (Isiegas et al., 2009; Lopez et al., 

2003). Pre-clinical studies have reported female mice exposed to nicotine were more 

sensitive to the conditioned rewarding effects of nicotine, where male mice were more 

directly responsive to nicotine concentrations in drinks (Isiegas et al., 2009). In human 

studies, male smokers were more accurate in discriminating placebo vs nicotine-

containing nasal spray compared to females (Perkins, 1999; Perkins et al., 1994). Female 

smokers also experienced greater craving relief from a denicotinized tobacco, alluding to 

their preference towards the sensory aspects (e.g., puffs) of smoking (Perkins, 2009; 

Perkins, 2001; McBride et al., 2006; Barrett, 2010). Hence, a different exposure method 
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(e.g., vaping chamber) may present a more appropriate model for female Sprague-

Dawley rats in the current protocol.  

Second, prior studies have suggested sex differences in smoking behaviours, 

where females tend to smoke for non-nicotine-related factors (e.g., to relieve stress and 

negative moods) vs. male smokers who smoke primarily for the reinforcing effects of 

nicotine (which may also be more dependent on the mesolimbic DA pathway) (Perkins et 

al., 1999; Perkins et al., 2012). Female smokers also exhibited less DA response in the 

ventral striatum (including the NAc) than in the dorsal striatum to nicotine stimulation 

compared to male smokers, further implicating a lower sensitivity to the rewarding 

effects of nicotine in females (Cosgrove et al., 2014). Hence, the current nicotine-treated 

female group could have experienced lower sensitivity to the rewarding effects of 

nicotine. Third, sensitivity to nicotine exposure could be dependent on the strain of rat 

used. For example, Faraday et al. (2003) have reported that nicotine exposure induced 

greater locomotor activity in Long-Evans female rats than Sprague-Dawley female rats, 

which further suggests a lower sensitivity to nicotine in Sprague-Dawley female rats. 

Furthermore, the female brain could be more protected against nicotine-induced 

pathological changes compared to the male brain. For example, studies have indicated 

that the female brain in rodents and humans develops earlier than the male brain in terms 

of synaptic production and pruning, as well as neuronal myelination (Yuan et al., 2015; 

Brenhouse & Andersen, 2011). Thus, the female brain might have been more developed 

and protected during the nicotine exposure window in this protocol. In addition, 

regarding the dosage and method of nicotine exposure, regimens of nicotine 

administration for female animals are relatively mixed in the literature. The route of 

nicotine exposure ranges from oral administration to intraperitoneal injections. Thus, 

future studies are required to establish a more consistent model for investigating 

adolescent nicotine exposure in female Sprague-Dawley rats and to address alternative 

windows of exposure during neurodevelopment. 

Moreover, the absence of anxiety/depressive-like behaviours and cognitive 

deficits in nicotine-treated female rats could be attributed to the presence of estrogen in 

the body during behavioural testing. In clinical settings, menopausal women (with low 
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circulating estrogen level) often experience anxiety and mood swings (Gleason et al., 

2015; Sahingoz et al., 2011; Bloch et al., 2000; Bromberger & Kravitz, 2011; 

Bromberger et al., 2013; Freeman et al., 2005). Hence, they are prescribed with hormone 

replacement therapy (HRT), which involves a mix of estrogen and progesterone, to help 

alleviate these menopausal symptoms (Gleason et al., 2015; Ðoković et al., 2015; Toffol 

et al., 2015; Zweifel & O’Brien, 1997; Gordon & Girdler, 2014). In particular, estrogen 

in HRT is shown to possess antidepressant effects (Grigoriadis & Kennedy, 2002), 

whereas progesterone is included to protect against the risk of hyperplasia and 

adenocarcinoma of the endometrium (Campagnoli et al., 2005). Estrogen has also been 

demonstrated to improve cognitive performance via spinogenesis and synaptogenesis in 

the PFC and hippocampus (Hara et al., 2015). Therefore, circulating estrogen in female 

rats might have provided protection against the anxiogenic and depressogenic effects of 

chronic adolescent nicotine exposure. 

In addition, estrogen and progesterone appear to have contrasting roles in 

different neurotransmission and receptor dynamics as well (Barth, 2015). Studies have 

reported that estrogen can increase glutamate, 7 nAChR and BDNF expression levels, 

suppress GABA input, upregulate D1R but decrease D2R level in the striatum 

(Yokomaku et al., 2003; Centeno et al., 2006; Allen & McCarson, 2005; Murphy et al., 

1998; Hruska & Nowak, 1988; Bazzett & Becker, 1994). Estrogen could also directly 

potentiate responses of 42 nAChR (Paradiso et al., 2001). On the contrary, 

progesterone could exert opposing effects on these biomarkers except BDNF and 

dopamine, where it increases BDNF level and acts synergistically with estrogen to 

modulate the release of dopamine (Smith et al., 1987; Czoty et al., 2009; Yang et al., 

2010; Cabrera et al., 1993; Kaur et al., 2007). 2 nAChR availability in female has also 

been shown to be negatively correlated to progesterone level (Cosgrove et al., 2012). 

Moreover, beyond the traditional notion of nuclear localization, estrogen and 

progesterone receptors have been found at the cellular membrane level, where they might 

play a role in the synaptic regulation of GABA and DA transmission in different brain 

regions (Almey et al., 2015; Brinton et al., 2008; Herbison, 1997; Wang, 2001). Hence, in 

the current study, electrophysiological results and the opposing molecular trends in 
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nicotine-exposed female rats could be attributed to compensatory actions mediated by 

estrogen or progesterone on various signaling pathways in the mesocorticolimbic system. 

Altogether, the interplay between estrogen and progesterone on these molecular targets 

seems to be critical in maintaining behavioural and neuronal homeostasis in the female 

body. Unfortunately, the relationship between the estrus cycle and various experimental 

outcomes could not be established due to the small sample size of data available. Future 

studies should increase the number of experimental subjects per stage cycle or manipulate 

circulating levels of estrogen and progesterone via ovariectomized rats to examine this 

relationship. 

In the current study, we observed baseline sex differences in several behavioural 

outcomes between male and female vehicle rats, such as the FST and social interaction 

test. This raises a very important question: are there fundamental sex differences in 

behavioural circuitries under different experimental circumstances? The answer to this 

question seems more complex than expected. Studies have proposed that, in some cases, 

differential signaling pathways are activated in the male and female brain in response to 

the same stimulus (Bangasser & Cuarenta, 2021). As a result, different signaling 

pathways and neuronal adaptations could lead to discrete cellular events and downstream 

cascades, and ultimately result in sexually divergent responses. The same concept could 

be applied to the current study, where the same behavioural paradigm activated different 

signaling cascades in male and female rats and led to differential responses. On the other 

hand, activation of the same circuitry could drive distinct behaviours in each sex. For 

instance, oxytocin signaling in the mPFC mediates prosocial behaviours in female mice 

but increases anxiety-like behaviours in male mice (Nakajima et al., 2014; Li et al., 

2016). Thus, we cannot assume that the same brain circuitry in male and female 

possesses the same functionality under identical circumstances. Taken together, these 

findings highlight the complexity of brain circuitry between sexes. Due to the historical 

bias of excluding female animals in experimental studies, most behavioural paradigms 

relevant to anxiety and depressive disorders were developed for male rodents, which 

prevents our further understanding of the female brain in the context of neuropsychiatric 

disorders. Therefore, future studies may be required to develop behavioural tests 



81 

 

specifically for female rodents to properly characterize female behavioural outcomes in 

relation to anxiety and depressive disorders.  

Overall, our current findings seem to contradict clinical findings where females 

experience higher prevalence of anxiety and depressive disorders, as well as challenges in 

smoking cessation therapies. Interestingly, previous studies have proposed sex 

differences in stress perception, where females report more subjective distress in stressful 

situations. For example, in the same stressful situation, females report heightened 

irritability and fear as well as decreased happiness vs. males, even though both have 

equivalent physiological responses (i.e., no significant differences in heart rate and 

plasma cortisol) (Kelly et al., 2007). Females have also been shown to possess higher 

emotional intelligence and be better at recognizing emotions (Poláčková Šolcová et al., 

2017; Fischer et al., 2018). From these findings, it seems plausible that females may be 

more efficient in identifying their current emotional state, and smoking is utilized as a 

means to relieve their subjective distress and anxiety, rather than being more sensitive to 

the pharmacologically reinforcing effects of nicotine as reported in males. The ability in 

recognizing subjective emotional states could be a potential reason behind the high 

prevalence of mood and anxiety disorders in females. In addition, it has been shown that 

female smokers exhibit higher response in the dorsal striatum than in the ventral striatum 

to nicotine stimulation compared to male smokers (Cosgrove et al., 2014). This finding 

could possibly explain the obstacles experienced by female in nicotine cessation, given 

the role of the dorsal striatum in habit formation compared to the ventral striatum in 

reinforcing effects. Nevertheless, further investigations are necessary to determine the 

potential mechanistic factors behind these sex differences in nicotine sensitivity and 

anxiety/depressive disorders. 

4.8 Limitations 

There are several limitations in the present study. Most importantly, the observed 

alterations in behavioural, neuronal and molecular outcomes are correlational data, since 

they were collected at different timepoints during the experimental period. Hence, 

mechanistic and causal relationships between the experimental variables cannot be 

implied until future pharmacological, chemogenetic or optogenetic intervention studies 
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are conducted. Second, due to the possibility that female Sprague-Dawley rats possess 

lower sensitivity to the pharmacological effects of nicotine, and previous reports 

suggesting females are more sensitive to the sensory cues of smoking, a different nicotine 

exposure regime, such as a vaping chamber, would be a more appropriate model for 

female Sprague-Dawley rats. In addition, electrophysiology and molecular analysis only 

examined the PFC, VTA and NAc in the current study. Future studies could investigate 

how the Hipp and BLA are involved in chronic adolescent nicotine exposure and 

anxiety/depressive disorders, given their role in memory, learning (Bird & Burgess, 

2008) and fear processing (Jhang et al., 2018).  

Finally, several technical limitations exist in vaginal sample collections and 

estrous cycle interpretation. Microscopic evaluation of vaginal cytology may not be the 

most objective method for documenting stages of the estrous cycle. Under the 

microscope, cell density of vaginal smears could differ in the case of uneven sample 

volume. Assessment of the estrous cycle would thus be inferential, since the density of 

various cell types is the primary determinant of each stage using this technique (Cora et 

al., 2015). Therefore, measuring electrical impedance of the vaginal wall (based on 

thickness) would be a better approach to identify different stages of the cycle, without 

being confounded by inconsistent sampling method (Jaramillo et al., 2012; Chesney et 

al., 2020). In addition, transitions between stages present another challenge in 

categorizing each step of the estrous cycle, as they possess overlapping characteristics of 

two stages. Mentioned previously as well, the sample size in each stage of the cycle was 

not sufficient to conclude any relationships with behavioural and electrophysiological 

outcomes. Altogether, a more rigorous and objective method needs to be developed for 

estrous cycle assessment, and the sample size per stage should be increased in future 

studies to address these concerns. 
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Chapter 5  

5 Conclusions 

Smoking-related diseases remain one of the top global causes of preventable 

mortality. In recent years, the increase in teen vaping trends becomes particularly 

concerning since adolescence represents a critical stage of brain development, where 

complex changes occur at the synaptic and network level. The main psychoactive 

component in these products, nicotine, can affect the mesocorticolimbic circuitry by 

altering different neurotransmitter dynamics, such as glutamate, GABA and dopamine. 

Many pre-clinical and human studies have demonstrated that nicotine addiction is 

causally linked to mood and anxiety disorders. In clinical studies, female exhibits higher 

prevalence of mood and anxiety disorders. They also experience challenges in smoking 

cessation and lower efficacy in nicotine replacement therapies, suggesting a potential sex-

specific response to nicotine. However, due to the historical bias of excluding female 

animals in pre-clinical studies, knowledge of sex-specific responses to nicotine exposure 

is limited in the extant literature. Thus, the present study aimed to determine any sex 

differences in mood and anxiety-related outcomes in response to chronic adolescent 

nicotine exposure using rodent model.  

Our results indicated that nicotine-treated male rats displayed anxiety/depressive-

like behaviours and cognitive deficits, such as reduced open arm time in the EPM, 

increased immobility time in FST, and lower recognition score in NOR. Aberrations in 

spontaneous neuronal activity and oscillation states were also observed in the PFC and 

VTA in this group. Furthermore, there were alterations in expression levels of anxiety 

and depressive-related molecular markers (e.g., 7 nAChR, VGLUT1, D1R/D2R, 

BDNF). Contrastingly, nicotine-treated female rats displayed no significant changes in 

behavioural and electrophysiological measures, but exhibited opposite trends in some 

molecular outcomes, indicating possible compensatory actions related to 

estrogen/progesterone signaling pathways in the female body. Overall, the current 

findings appear to be consistent with previous reports suggesting females are less 

sensitive to the pharmacological effects of nicotine. These corresponding results have 
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important implications in determining the sensitivity to nicotine in females, as well as 

exploring the interactions between nicotine, estrogen/progesterone, and different 

neurotransmitter dynamics in the female brain. Equally important is the question of why 

the male brain appears particularly vulnerable to adolescent nicotine. Are there 

neurobiological and/or hormonal factors that reduce protection against nicotine during 

adolescence, specifically in males? Regardless, the present data sets provide a viable 

platform for future research into sex-specific markers associated with anxiety and 

depressive disorders. Future studies could also investigate other brain regions within the 

mesocorticolimbic circuitry, including the Hipp and BLA, regarding their role in 

anxiety/depressive-related phenotypes following adolescent nicotine exposure. Finally, 

this study could serve as a therapeutic starting point for developing novel smoking 

intervention treatments, which would improve clinical outcomes in a sex-specific 

manner. 
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