808 research outputs found
Patterns of link reciprocity in directed networks
We address the problem of link reciprocity, the non-random presence of two
mutual links between pairs of vertices. We propose a new measure of reciprocity
that allows the ordering of networks according to their actual degree of
correlation between mutual links. We find that real networks are always either
correlated or anticorrelated, and that networks of the same type (economic,
social, cellular, financial, ecological, etc.) display similar values of the
reciprocity. The observed patterns are not reproduced by current models. This
leads us to introduce a more general framework where mutual links occur with a
conditional connection probability. In some of the studied networks we discuss
the form of the conditional connection probability and the size dependence of
the reciprocity.Comment: Final version accepted for publication on Physical Review Letter
Could humans recognize odor by phonon assisted tunneling?
Our sense of smell relies on sensitive, selective atomic-scale processes that
are initiated when a scent molecule meets specific receptors in the nose.
However, the physical mechanisms of detection are not clear. While odorant
shape and size are important, experiment indicates these are insufficient. One
novel proposal suggests inelastic electron tunneling from a donor to an
acceptor mediated by the odorant actuates a receptor, and provides critical
discrimination. We test the physical viability of this mechanism using a simple
but general model. Using values of key parameters in line with those for other
biomolecular systems, we find the proposed mechanism is consistent both with
the underlying physics and with observed features of smell, provided the
receptor has certain general properties. This mechanism suggests a distinct
paradigm for selective molecular interactions at receptors (the swipe card
model): recognition and actuation involve size and shape, but also exploit
other processes.Comment: 10 pages, 1 figur
The Cooking and Pneumonia Study (CAPS) in Malawi: A Cross-Sectional Assessment of Carbon Monoxide Exposure and Carboxyhemoglobin Levels in Children under 5 Years Old.
Household air pollution is estimated to cause half a million deaths from pneumonia in children worldwide. The Cooking and Pneumonia Study (CAPS) was conducted to determine whether the use of cleaner-burning biomass-fueled cookstoves would reduce household air pollution and thereby the incidence of pneumonia in young children in rural Malawi. Here we report a cross-sectional assessment of carbon monoxide (CO) exposure and carboxyhemoglobin (COHgB) levels at recruitment to CAPS. Mean (SD; range) 48-h CO exposure of 1928 participating children was 0.90 (2.3; 0⁻49) ppm and mean (SD; range) COHgB level was 5.8% (3.3; 0⁻20.3). Higher mean CO and COHgB levels were associated with location (Chikhwawa versus Chilumba) (OR 3.55 (1.73⁻7.26)); (OR 2.77 (1.08⁻7.08)). Correlation between mean CO and COHgB was poor (Spearman's ρ = 0.09, p < 0.001). The finding of high COHgB levels in young children in rural Malawi that are at levels at which adverse neurodevelopmental and cognitive effects occur is of concern. Effective approaches for reducing exposure to CO and other constituents of air pollution in rural sub-Saharan African settings are urgently needed.This research was funded by a Joint Global Health Trials Grant from the Medical Research Council,
UK Department for International Development, and Wellcome Trust (MR/K006533/1) and a New Investigator
Research Grant from the Medical Research Council (MR/L002515/1)
Recommended from our members
Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites
Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding
It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems
Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum
Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England
Tributyltin (TBT), an aqueous biocide derived from antifouling paint pollution, is known to have impacted coastal marine ecosystems, and has been reported in the sediment of the Norfolk and Suffolk Broads, a network of rivers and shallow lakes in eastern England. In the marine environment, the 1987 TBT ban has resulted in expanded use of alternative biocides, raising the question of whether these products too have impacted the Broads ecosystem and freshwaters in general. Here we examine the lake sediment record in the Norfolk and Suffolk Broads for contamination by copper (Cu) (as an active biocide agent) and zinc (Zn) (as a component of booster biocides), to assess their occurrence and potential for causing environmental harm in freshwater ecosystems. We find that, after the introduction of leisure boating, there is a statistically significant difference in Cu enrichment between heavily and lightly boated sites, while no such difference exists prior to this time. At the heavily boated sites the onset of Cu enrichment coincides with a period of rapid increase in leisure boating. Such enrichment is maintained to the present day, with some evidence of continued increase. We conclude that Cu-based antifouling has measurably contaminated lakes exposed to boating, at concentrations high enough to cause ecological harm. Similar findings can be expected at other boated freshwater ecosystems elsewhere in the world
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
Production studies, transformations in children’s television and the global turn
Moving away from the dominant discourse of US experience, this article looks at how the production of local content for children remains a central issue in many parts of the world, in spite of the growth of transnational media and the apparent abundance of content for children worldwide. Drawing on a pre-summit workshop on Children’s Content at the Core of Public Service Media, held at the 2014 World Summit on Media for Children, it considers the lack of academic perspectives on production, before exploring with workshop participants the regulatory and funding frameworks for quality children’s content, and the conditions for their successful implementation. There is a continuing problem about producing sustainable children’s content, and western models are not always the most appropriate at providing solutions, which need to be nuanced and tailored to different national, regional and local contexts
Combined and single effects of pesticide carbaryl and toxic Microcystis aeruginosa on the life history of Daphnia pulicaria
The combined influence of a pesticide (carbaryl) and a cyanotoxin (microcystin LR) on the life history of Daphnia pulicaria was investigated. At the beginning of the experiments animals were pulse exposed to carbaryl for 24 h and microcystins were delivered bound in Microcystis’ cells at different, sub-lethal concentrations (chronic exposure). In order to determine the actual carbaryl concentrations in the water LC–MS/MS was used. For analyses of the cyanotoxin concentration in Daphnia’s body enzyme-linked immunosorbent assay (ELISA) was used. Individual daphnids were cultured in a flow-through system under constant light (16 h of light: 8 h of dark), temperature (20°C), and food conditions (Scenedesmus obliquus, 1 mg of C l−1). The results showed that in the treatments with carbaryl egg numbers per female did not differ significantly from controls, but the mortality of newborns increased significantly. Increasing microcystin concentrations significantly delayed maturation, reduced size at first reproduction, number of eggs, and newborns. The interaction between carbaryl and Microcystis was highly significant. Animals matured later and at a smaller size than in controls. The number of eggs per female was reduced as well. Moreover, combined stressors caused frequent premature delivery of offspring with body deformations such as dented carapax or an undeveloped heart. This effect is concluded to be synergistic and could not be predicted from the effects of the single stressors.
Optimising observing strategies for monitoring animals using drone-mounted thermal infrared cameras
The proliferation of relatively affordable off-the-shelf drones offers great opportunities for wildlife monitoring and conservation. Similarly the recent reduction in cost of thermal infrared cameras also offers new promise in this field, as they have the advantage over conventional RGB cameras of being able to distinguish animals based on their body heat and being able to detect animals at night. However, the use of drone-mounted thermal infrared cameras comes with several technical challenges. In this paper we address some of these issues, namely thermal contrast problems due to heat from the ground, absorption and emission of thermal infrared radiation by the atmosphere, obscuration by vegetation, and optimizing the flying height of drones for a best balance between covering a large area and being able to accurately image and identify animals of interest. We demonstrate the application of these methods with a case study using field data, and make the first ever detection of the critically endangered riverine rabbit (Bunolagus monticularis) in thermal infrared data. We provide a web-tool so that the community can easily apply these techniques to other studies (http://www.astro.ljmu.ac.uk/~aricburk/uav_calc/)
- …