534 research outputs found
Covariant Equilibrium Statistical Mechanics
A manifest covariant equilibrium statistical mechanics is constructed
starting with a 8N dimensional extended phase space which is reduced to the 6N
physical degrees of freedom using the Poincare-invariant constrained
Hamiltonian dynamics describing the micro-dynamics of the system. The reduction
of the extended phase space is initiated forcing the particles on energy shell
and fixing their individual time coordinates with help of invariant time
constraints. The Liouville equation and the equilibrium condition are
formulated in respect to the scalar global evolution parameter which is
introduced by the time fixation conditions. The applicability of the developed
approach is shown for both, the perfect gas as well as the real gas. As a
simple application the canonical partition integral of the monatomic perfect
gas is calculated and compared with other approaches. Furthermore,
thermodynamical quantities are derived. All considerations are shrinked on the
classical Boltzmann gas composed of massive particles and hence quantum effects
are discarded.Comment: 22 pages, 1 figur
SPRINT, STAR: Két Hatékony Kezelési Protokoll Az Intenzív Osztályon Kezelt Betegek Vércukorszintjének Normoglikémiás Tartományban Tartásához
(In Hungarian) Paper P0
Dynamics of test bodies with spin in de Sitter spacetime
We study the motion of spinning test bodies in the de Sitter spacetime of
constant positive curvature. With the help of the 10 Killing vectors, we derive
the 4-momentum and the tensor of spin explicitly in terms of the spacetime
coordinates. However, in order to find the actual trajectories, one needs to
impose the so-called supplementary condition. We discuss the dynamics of
spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma
On the motion of a classical charged particle
We show that the Lorentz-Dirac equation is not an unavoidable consequence of
energy-momentum conservation for a point charge. What follows solely from
conservation laws is a less restrictive equation already obtained by Honig and
Szamosi. The latter is not properly an equation of motion because, as it
contains an extra scalar variable, it does not determine the future evolution
of the charge. We show that a supplementary constitutive relation can be added
so that the motion is determined and free from the troubles that are customary
in Lorentz-Dirac equation, i. e. preacceleration and runaways
An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime
The problem of determining the electromagnetic and gravitational
``self-force'' on a particle in a curved spacetime is investigated using an
axiomatic approach. In the electromagnetic case, our key postulate is a
``comparison axiom'', which states that whenever two particles of the same
charge have the same magnitude of acceleration, the difference in their
self-force is given by the ordinary Lorentz force of the difference in their
(suitably compared) electromagnetic fields. We thereby derive an expression for
the electromagnetic self-force which agrees with that of DeWitt and Brehme as
corrected by Hobbs. Despite several important differences, our analysis of the
gravitational self-force proceeds in close parallel with the electromagnetic
case. In the gravitational case, our final expression for the (reduced order)
equations of motion shows that the deviation from geodesic motion arises
entirely from a ``tail term'', in agreement with recent results of Mino et al.
Throughout the paper, we take the view that ``point particles'' do not make
sense as fundamental objects, but that ``point particle equations of motion''
do make sense as means of encoding information about the motion of an extended
body in the limit where not only the size but also the charge and mass of the
body go to zero at a suitable rate. Plausibility arguments for the validity of
our comparison axiom are given by considering the limiting behavior of the
self-force on extended bodies.Comment: 37 pages, LaTeX with style package RevTeX 3.
Self-forces on extended bodies in electrodynamics
In this paper, we study the bulk motion of a classical extended charge in
flat spacetime. A formalism developed by W. G. Dixon is used to determine how
the details of such a particle's internal structure influence its equations of
motion. We place essentially no restrictions (other than boundedness) on the
shape of the charge, and allow for inhomogeneity, internal currents,
elasticity, and spin. Even if the angular momentum remains small, many such
systems are found to be affected by large self-interaction effects beyond the
standard Lorentz-Dirac force. These are particularly significant if the
particle's charge density fails to be much greater than its 3-current density
(or vice versa) in the center-of-mass frame. Additional terms also arise in the
equations of motion if the dipole moment is too large, and when the
`center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly
speaking). These conditions are often quite restrictive. General equations of
motion were also derived under the assumption that the particle can only
interact with the radiative component of its self-field. These are much simpler
than the equations derived using the full retarded self-field; as are the
conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for
publication in Phys. Rev.
Geodesics, the Equivalence Principle and Singularities in Higher-dimensional General Relativity and Braneworlds
The geodesics of a spacetime seldom coincide with those of an embedded
submanifold of codimension one. We investigate this issue for
higher-dimensional general relativity-like models, firstly in the simpler case
without branes to isolate which features are already present, and then in the
more complicated case with branes. The framework in which we consider branes is
general enough to include asymmetric braneworlds but not thick branes. We apply
our results on geodesics to study both the equivalence principle and
cosmological singularities. Among the models we study these considerations
favour symmetric braneworlds with a negative bulk cosmological constant.Comment: 20 pages, 2 figures. Accepted by JCAP. Minor proofreading
corrections; several references adde
- …