82 research outputs found

    Prenatal Exposure to Perfluorooctanoate and Risk of Overweight at 20 Years of Age: A Prospective Cohort Study

    Get PDF
    Background: Perfluoroalkyl acids are persistent compounds used in various industrial -applications. Of these compounds, perfluorooctanoate (PFOA) is currently detected in humans worldwide. A recent study on low-dose developmental exposure to PFOA in mice reported increased weight and elevated biomarkers of adiposity in postpubertal female offspring

    Ultra-processed food consumption and associations with biomarkers of nutrition and inflammation in pregnancy: The Norwegian Environmental Biobank

    Get PDF
    BackgroundA high consumption of ultra-processed foods (UPFs) is often associated with low nutritional quality, but data on associations with biomarkers are scarce. We aimed to explore associations between UPF intake, diet quality, and concentrations of biomarkers of nutrition and inflammation measured in mid-pregnancy.MethodsThis cross-sectional study included n = 2,984 pregnant women recruited during 2002–2008 in the Norwegian Mother, Father, and Child Cohort Study (MoBa). Concentrations of C-reactive protein (CRP) and 21 nutritional biomarkers including carotenes (α-carotene, β-carotene, γ-carotene, α-cryptoxanthin, β-cryptoxanthin, lutein, lycopene), vitamins [α-tocopherol, γ-tocopherol, 25-hydroxyvitamin D (25-OH-D), retinol], creatinine, elements (K, Na, Co, Cu, Mn, Mo, Se, Zn), and ferritin (Fe) were measured in blood and urine collected in mid-pregnancy. Habitual diet in pregnancy was assessed using a validated semi-quantitative food frequency questionnaire. We calculated the relative (%) energy contribution of UPF to overall intake according to the NOVA classification. We also applied a diet quality index (DQI) adapted to assess adherence to Norwegian dietary guidelines (DQI; min–max: 0–110, higher score meaning higher adherence). We present summary statistics for biomarker concentrations and explored associations between UPF intake or the DQI and measured biomarkers using adjusted linear, logistic, and generalized additive regression models.ResultsUltra-processed food intake was positively associated with biomarker concentrations of vitamin E (γ-tocopherol), creatinine, K, and Na [βs: 5.6 to 17% increase in biomarker concentration per interquartile range (IQR) increase in UPF intake] and negatively associated with carotenoids (α-carotene, β-carotene, γ-carotene, α-cryptoxanthin, β-cryptoxanthin, lutein, lycopene), vitamin A, Mo, and Se (βs: −2.1 to −18%). Inversely, high diet quality (i.e., the DQI) was positively associated with concentrations of carotenoids, vitamins [vitamin A (retinol) and D (25-OH-D)], and Se (β: 1.5 to 25%) and negatively associated with vitamin E (γ-tocopherol), creatinine, and Na (β: −4.8 to −8.3%). A weak, positive association was found between UPF and CRP (β: 5.4%, 95% CI 0.12–11%).ConclusionHigh UPF intake was associated with reduced concentrations of nutrition biomarkers in mid-pregnancy. Associations in the opposite direction were found with high adherence to the Norwegian dietary guidelines, suggesting that the two dietary scoring systems capture diet quality in a mirrored manner in this population

    Interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) for flame retardant analysis in biological matrices: Results from the HBM4EU project

    Get PDF
    The European Human Biomonitoring Initiative (HBM4EU) is coordinating and advancing human biomonitoring (HBM). For this purpose, a network of laboratories delivering reliable analytical data on human exposure is fundamental. The analytical comparability and accuracy of laboratories analysing flame retardants (FRs) in serum and urine were investigated by a quality assurance/quality control (QA/QC) scheme comprising interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs). This paper presents the evaluation process and discusses the results of four ICI/EQUAS rounds performed from 2018 to 2020 for the determination of ten halogenated flame retardants (HFRs) represented by three congeners of polybrominated diphenyl ethers (BDE-47, BDE-153 and BDE-209), two isomers of hexabromocyclododecane (α-HBCD and γ-HBCD), two dechloranes (anti-DP and syn-DP), tetrabromobisphenol A (TBBPA), decabromodiphenylethane (DBDPE), and 2,4,6-tribromophenol (2,4,6-TBP) in serum, and four metabolites of organophosphorus flame retardants (OPFRs) in urine, at two concentration levels. The number of satisfactory results reported by laboratories increased during the four rounds. In the case of HFRs, the scope of the participating laboratories varied substantially (from two to ten) and in most cases did not cover the entire target spectrum of chemicals. The highest participation rate was reached for BDE-47 and BDE-153. The majority of participants achieved more than 70% satisfactory results for these two compounds over all rounds. For other HFRs, the percentage of successful laboratories varied from 44 to 100%. The evaluation of TBBPA, DBDPE, and 2,4,6-TBP was not possible because the number of participating laboratories was too small. Only seven laboratories participated in the ICI/EQUAS scheme for OPFR metabolites and five of them were successful for at least two biomarkers. Nevertheless, the evaluation of laboratory performance using Z-scores in the first three rounds required an alternative approach compared to HFRs because of the small number of participants and the high variability of experts' results. The obtained results within the ICI/EQUAS programme showed a significant core network of comparable European laboratories for HBM of BDE-47, BDE-153, BDE-209, α-HBCD, γ-HBCD, anti-DP, and syn-DP. On the other hand, the data revealed a critically low analytical capacity in Europe for HBM of TBBPA, DBDPE, and 2,4,6-TBP as well as for the OPFR biomarkers.We gratefully acknowledge funding by the European Union's Horizon 2020 research and innovation programme under the grant agreement No. 733032.S

    Interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) for flame retardant analysis in biological matrices: Results from the HBM4EU project

    Get PDF
    The European Human Biomonitoring Initiative (HBM4EU) is coordinating and advancing human biomonitoring (HBM). For this purpose, a network of laboratories delivering reliable analytical data on human exposure is fundamental. The analytical comparability and accuracy of laboratories analysing flame retardants (FRs) in serum and urine were investigated by a quality assurance/quality control (QA/QC) scheme comprising interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs). This paper presents the evaluation process and discusses the results of four ICI/EQUAS rounds performed from 2018 to 2020 for the determination of ten halogenated flame retardants (HFRs) represented by three congeners of polybrominated diphenyl ethers (BDE-47, BDE-153 and BDE-209), two isomers of hexabromocyclododecane (α-HBCD and γ-HBCD), two dechloranes (anti-DP and syn-DP), tetrabromobisphenol A (TBBPA), decabromodiphenylethane (DBDPE), and 2,4,6-tribromophenol (2,4,6-TBP) in serum, and four metabolites of organophosphorus flame retardants (OPFRs) in urine, at two concentration levels. The number of satisfactory results reported by laboratories increased during the four rounds. In the case of HFRs, the scope of the participating laboratories varied substantially (from two to ten) and in most cases did not cover the entire target spectrum of chemicals. The highest participation rate was reached for BDE-47 and BDE-153. The majority of participants achieved more than 70% satisfactory results for these two compounds over all rounds. For other HFRs, the percentage of successful laboratories varied from 44 to 100%. The evaluation of TBBPA, DBDPE, and 2,4,6-TBP was not possible because the number of participating laboratories was too small. Only seven laboratories participated in the ICI/EQUAS scheme for OPFR metabolites and five of them were successful for at least two biomarkers. Nevertheless, the evaluation of laboratory performance using Z-scores in the first three rounds required an alternative approach compared to HFRs because of the small number of participants and the high variability of experts' results. The obtained results within the ICI/EQUAS programme showed a significant core network of comparable European laboratories for HBM of BDE-47, BDE-153, BDE-209, α-HBCD, γ-HBCD, anti-DP, and syn-DP. On the other hand, the data revealed a critically low analytical capacity in Europe for HBM of TBBPA, DBDPE, and 2,4,6-TBP as well as for the OPFR biomarkers.We gratefully acknowledge funding by the European Union's Horizon 2020 research and innovation programme under the grant agreement No. 733032.S

    The early-life exposome and epigenetic age acceleration in children

    Get PDF
    The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath’s Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early ageThe study received funding from the European Community’s Seventh Framework Programme (FP7/2007-206) (grant agreement no 308333) (HELIX project), the H2020-EU.3.1.2. - Preventing Disease Programme (grant agreement no 874583) (ATHLETE project), and from the European Union’s Horizon 2020 research and innovation programme (grant Agreement number: 733206) (Early Life stressors and Lifecycle Health (LIFECYCLE)). BiB received funding from the Welcome Trust (WT101597MA), from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA was supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. OR was funded by a UKRI Future Leaders Fellowship (MR/S03532X/1). MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128)S

    Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies

    Get PDF
    This article belongs to the Special Issue Analysis of Human Biomonitoring Data and Risk Assessment of Human Exposure to Environmental Chemicals: What Do We Learn for Prevention?More than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.This work has received external funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author’s organizations. The Norwegian Institute of Public Health (NIPH) has contributed to the funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465).info:eu-repo/semantics/publishedVersio

    Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021)

    Get PDF
    This article belongs to the Special Issue Analysis of Human Biomonitoring Data and Risk Assessment of Human Exposure to Environmental Chemicals: What Do We Learn for Prevention?Acrylamide, a substance potentially carcinogenic in humans, represents a very prevalent contaminant in food and is also contained in tobacco smoke. Occupational exposure to higher concentrations of acrylamide was shown to induce neurotoxicity in humans. To minimize related risks for public health, it is vital to obtain data on the actual level of exposure in differently affected segments of the population. To achieve this aim, acrylamide has been added to the list of substances of concern to be investigated in the HBM4EU project, a European initiative to obtain biomonitoring data for a number of pollutants highly relevant for public health. This report summarizes the results obtained for acrylamide, with a focus on time-trends and recent exposure levels, obtained by HBM4EU as well as by associated studies in a total of seven European countries. Mean biomarker levels were compared by sampling year and time-trends were analyzed using linear regression models and an adequate statistical test. An increasing trend of acrylamide biomarker concentrations was found in children for the years 2014–2017, while in adults an overall increase in exposure was found to be not significant for the time period of observation (2000–2021). For smokers, represented by two studies and sampling for, over a total three years, no clear tendency was observed. In conclusion, samples from European countries indicate that average acrylamide exposure still exceeds suggested benchmark levels and may be of specific concern in children. More research is required to confirm trends of declining values observed in most recent years.This work received external funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author’s organizations. The Norwegian Institute of Public Health (NIPH) contributed to the funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements were partly funded by the Research Council of Norway through research projects (275903 and 268465).info:eu-repo/semantics/publishedVersio

    Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study

    Get PDF
    Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia

    Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs).

    Get PDF
    Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158
    corecore