266 research outputs found
Automated quantitative analysis of single and double label autoradiographs
A method for the analysis of silver grain content in both single and double label autoradiographs is presented. The total grain area is calculated by counting the number of pixels at which the recorded light intensity in transmission dark field illumination exceeds a selected threshold. The calibration tests included autoradiographs with low (3H- thymidin) and high (3H-desoxyuridin) silver grain density. The results are proportional to the customary visual grain count. For the range of visibly countable grain densities in single labeled specimens, the correlation coefficient between the computed values and the visual grain counts is better than 0.96. In the first emulsion of the two emulsion layer autoradiographs of double labeled specimens (3H-14C- thymidin) the correlation coefficient is 0.919 and 0.906. The method provides a statistical correction for the background grains not due to the isotope. The possibility to record 14C tracks by shifting the focus through the second emulsion of the double labeled specimens is also demonstrated. The reported technique is essentially independent of size, shape and density of the grains
Universal scaling of nonlocal and local resistance fluctuations in small wires
Resistance fluctuations in small metal samples result from coherent transport of the carriers. The wave functions of the carriers extend into regions which are not accessible classically. We have directly measured the length dependence of the nonlocal magnetoresistance fluctuations in Sb and Au wires by studying regions of our samples separated from the classical current path by a distance L which varied from 3Lcphi down to 0.2Lcphi (where Lcphi is the phase coherence length for the carriers in the metal). These fluctuations decay exponentially with L/Lcphi. Measurements along the classical current paths scale more slowly with L/Lcphi than predicted by the analytical theory but are in agreement with numerical simulations. We have also studied the length dependence of the magnetic field correlation scale BC, and we find that it is in qualitative agreement with a recent model calculation that accounts for the voltage probes
Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring
We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with
two different four-terminal configurations. While the amplitude and the phase
of the AB oscillations are well explained within the framework of the
Landaur-B\"uttiker formalism, it is found that the probe configuration strongly
affects the coherence time of the electrons, i.e., the decoherence is much
reduced in the configuration of so-called nonlocal resistance. This result
should provide an important clue in clarifying the mechanism of quantum
decoherence in solids.Comment: 4 pages, 4 figures, RevTe
The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane
Caveolae are small coated plasma membrane invaginations with diverse functions. Caveolae undergo curvature changes. Yet, it is unclear which proteins regulate this process. To address this gap, we develop a correlative stimulated emission depletion (STED) fluorescence and platinum replica electron microscopy imaging (CLEM) method to image proteins at single caveolae. Caveolins and cavins are found at all caveolae, independent of curvature. EHD2 is detected at both low and highly curved caveolae. Pacsin2 associates with low curved caveolae and EHBP1 with mostly highly curved caveolae. Dynamin is absent from caveolae. Cells lacking dynamin show no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by intermittent associations with pacsin2 and EHBP1. These coats can flatten and curve to enable lipid traffic, signaling, and changes to the surface area of the cell
Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198478
Blue supergiant stars are known to display photometric and spectroscopic
variability that is suggested to be linked to stellar pulsations. Pulsational
activity in massive stars strongly depends on the star's evolutionary stage and
is assumed to be connected with mass-loss episodes, the appearance of
macroturbulent line broadening, and the formation of clumps in the wind. To
investigate a possible interplay between pulsations and mass-loss, we carried
out an observational campaign of the supergiant 55 Cyg over a period of five
years to search for photospheric activity and cyclic mass-loss variability in
the stellar wind. We modeled the H, He I, Si II and Si III lines using the
nonlocal thermal equilibrium atmosphere code FASTWIND and derived the
photospheric and wind parameters. In addition, we searched for variability in
the intensity and radial velocity of photospheric lines and performed a moment
analysis of the line profiles to derive frequencies and amplitudes of the
variations. The Halpha line varies with time in both intensity and shape,
displaying various types of profiles: P Cygni, pure emission, almost complete
absence, and double or multiple peaked. The star undergoes episodes of variable
mass-loss rates that change by a factor of 1.7-2 on different timescales. We
also observe changes in the ionization rate of Si II and determine a
multiperiodic oscillation in the He I absorption lines, with periods ranging
from a few hours to 22.5 days. We interpret the photospheric line variations in
terms of oscillations in p-, g-, and strange modes. We suggest that these
pulsations can lead to phases of enhanced mass loss. Furthermore, they can
mislead the determination of the stellar rotation. We classify the star as a
post-red supergiant, belonging to the group of alpha Cyg variables.Comment: 20 pages, 18 figures, 3 tables, accepted to Astronomy & Astrophysic
Unveiling the evolutionary state of three B supergiant stars: PU Gem, CMa and CMa
We aim to combine asteroseismology, spectroscopy, and evolutionary models to
establish a comprehensive picture of the evolution of Galactic blue supergiant
stars (BSG). To start such an investigation, we selected three BSG candidates
for our analysis: HD 42087 (PU Gem), HD 52089 ( CMa) and HD 58350
( CMa). These stars show pulsations and were suspected to be in an
evolutionary stage either preceding or succeding the red supergiant (RSG)
stage.
For our analysis, we utilized the 2-min cadence TESS data to study the
photometric variability and obtained new spectroscopic observations at the
CASLEO observatory. We calculated CMFGEN non-LTE radiative transfer models and
derived stellar and wind parameters using the iterative spectral analysis
pipeline XTGRID. The spectral modeling was limited to changing only the
effective temperature, surface gravity, CNO abundances, and mass-loss rates.
Finally, we compared the derived metal abundances with predictions from Geneva
stellar evolution models. The frequency spectra of all three stars show either
stochastic oscillations, nonradial strange modes, or a rotational splitting.
We conclude that the rather short sectoral observing windows of TESS prevent
establishing a reliable mode identification of low frequencies connected to
mass-loss variabilities. The spectral analysis confirmed gradual changes in the
mass-loss rates and the derived CNO abundances comply with the values reported
in the literature. We were able to achieve a quantitative match with stellar
evolution models for the stellar masses and luminosities. However, the
spectroscopic surface abundances turned out to be inconsistent with theoretical
predictions. The stars show N enrichment, typical for CNO cycle processed
material, but the abundance ratios do not reflect the associated levels of C
and O depletion.Comment: 29 pages, 18 figures, Accepted for publication in Galaxie
Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2
The alpha,beta2,mu2,sigma2 heterotetrameric AP2 complex is recruited exclusively to the phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2))-rich plasma membrane where, amongst other roles, it selects motif-containing cargo proteins for incorporation into clathrin-coated vesicles. Unphosphorylated and mu2Thr156-monophosphorylated AP2 mutated in their alphaPtdIns4,5P(2), mu2PtdIns4,5P(2), and mu2Yxxvarphi binding sites were produced, and their interactions with membranes of different phospholipid and cargo composition were measured by surface plasmon resonance. We demonstrate that recognition of Yxxvarphi and acidic dileucine motifs is dependent on corecognition with PtdIns4,5P(2), explaining the selective recruitment of AP2 to the plasma membrane. The interaction of AP2 with PtdIns4,5P(2)/Yxxvarphi-containing membranes is two step: initial recruitment via the alphaPtdIns4,5P(2) site and then stabilization through the binding of mu2Yxxvarphi and mu2PtdIns4,5P(2) sites to their ligands. The second step is facilitated by a conformational change favored by mu2Thr156 phosphorylation. The binding of AP2 to acidic-dileucine motifs occurs at a different site from Yxxvarphi binding and is not enhanced by mu2Thr156 phosphorylation
Studies of h/e Aharonov-Bohm Photovoltaic Oscillations in Mesoscopic Au Rings
We have investigated a mesoscopic photovoltaic (PV) effect in micron-size Au
rings in which a dc voltage Vdc is generated in response to microwave
radiation. The effect is due to the lack of inversion symmetry in a disordered
system. Aharonov-Bohm PV oscillations with flux period h/e have been observed
at low microwave intensities for temperatures ranging from 1.4 to 13 K. For
moderate microwave intensities the h/e PV oscillations are completely quenched
providing evidence that the microwaves act to randomize the phase of the
electrons. Studies of the temperature dependence of Vdc also provide evidence
of the dephasing nature of the microwave field. A complete theoretical
explanation of the observed behavior seems to require a theory for the PV
effect in a ring geometry.Comment: 10 pages (RevTex twocolumn style), 8 figures-2 pages (one postscript
file) To be published in Phys. Rev.
Analytical solutions for radiation-driven winds in massive stars - II: The δ-slow regime
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analytical expressions for the wind parameters and velocity profile would have many advantages over numerical calculations that solve the complex non-linear set of hydrodynamic equations. In a previous work, we obtained an analytical description for the fast wind regime. Now, we propose an approximate expression for the line-force in terms of new parameters and obtain a velocity profile closed-form solution (in terms of the Lambert W function) for the δ-slow regime. Using this analytical velocity profile, we were able to obtain the mass-loss rates based on the m-CAK theory. Moreover, we established a relation between this new set of line-force parameters with the known stellar and m-CAK line-force parameters. To this purpose, we calculated a grid of numerical hydrodynamical models and performed a multivariate multiple regression. The numerical and our descriptions lead to good agreement between their values.Fil: Araya, I.. Universidad Mayor; ChileFil: Christen, A.. Universidad de Valparaíso; ChileFil: Cure, M.. Universidad de Valparaíso; ChileFil: Cidale, Lydia Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Venero, Roberto Oscar José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Arcos, C.. Universidad de Valparaíso; ChileFil: Gormaz Matamala, A.. Universidad de Valparaíso; Chile. Universidad Adolfo Ibañez; ChileFil: Haucke, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Escarate, P.. Universidad Austral de Chile; ChileFil: Clavería, H.. Pontificia Universidad Católica de Valparaíso; Chil
Fast neurotransmitter release regulated by the endocytic scaffold intersectin.
Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain
- …