34 research outputs found
Cytosolic Fe-S cluster protein maturation and iron regulation are independent of the mitochondrial Erv1/Mia40 import system
The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways
Spermatogonial stem cell sensitivity to capsaicin: An in vitro study
<p>Abstract</p> <p>Background</p> <p>Conflicting reports have been published on the sensitivity of spermatogenesis to capsaicin (CAP), the pungent ingredient of hot chili peppers. Here, the effect of CAP on germ cell survival was investigated by using two testis germ cell lines as a model. As CAP is a potent agonist of the transient receptor potential vanilloid receptor 1 (TRPV1) and no information was available of its expression in germ cells, we also studied the presence of TRPV1 in the cultured cells and in germ cells in situ.</p> <p>Methods</p> <p>The rat spermatogonial stem cell lines Gc-5spg and Gc-6spg were used to study the effects of different concentrations of CAP during 24 and 48 h. The response to CAP was first monitored by phase-contrast microscopy. As germ cells appear to undergo apoptosis in the presence of CAP, the activation of caspase 3 was studied using an anti activated caspase 3 antibody or by quantifying the amount of cells with DNA fragmentation using flow cytometry. Immunolocalization was done with an anti-TRPV1 antibody either with the use of confocal microscopy to follow live cell labeling (germ cells) or on Bouin fixed paraffin embedded testicular tissues. The expression of TRPV1 by the cell lines and germ cells was confirmed by Western blots.</p> <p>Results</p> <p>Initial morphological observations indicated that CAP at concentrations ranging from 150 uM to 250 uM and after 24 and 48 h of exposure, had deleterious apoptotic-like effects on both cell lines: A large population of the CAP treated cell cultures showed signs of DNA fragmentation and caspase 3 activation. Quantification of the effect demonstrated a significant effect of CAP with doses of 150 uM in the Gc-5spg cell line and 200 uM in the Gc-6spg cell line, after 24 h of exposure. The effect was dose and time dependent in both cell lines. TRPV1, the receptor for CAP, was found to be expressed by the spermatogonial stem cells in vitro and also by premeiotic germ cells in situ.</p> <p>Conclusion</p> <p>CAP adversely affects spermatogonial survival in vitro by inducing apoptosis to those cells and TRPV-1, a CAP receptor, may be involved in this effect as this receptor is expressed by mitotic germ cells.</p
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Angioplasty-induced epigenomic remodeling entails BRD4 and EZH2 hierarchical regulations
AbstractAtherosclerosis is commonly treated with angioplasty which, however, evokes neointimal hyperplasia (IH) and recurrent stenotic diseases. Epigenomic investigation was lacking on post-angioplasty IH. The histone acetylation reader BRD4 and H3K27me3 writer EZH2 are potent epigenetic factors; their relationship is little understood. Through genome-wide survey in the rat angioplasty model, we studied BRD4 and EZH2 functional regulations involved in IH.We performed chromatin immunoprecipitation sequencing (ChIPseq) using rat carotid arteries. While H3K27me3 ChIPseq signal prevalently intensified in balloon-injured (vs uninjured) arteries, BRD4 and H3K27ac became more enriched at Ezh2. Indeed, BRD4-siRNA or CRISPR-deletion of BRD4-associated enhancer abated the smooth muscle cell (SMC) expression of EZH2, and SMC-specific BRD4 knockout in BRD4fl/fl; Myh11CreERT2 mice reduced both H3K27me3 and IH in wire-injured femoral arteries. In accordance, post-angioplasty IH was exacerbated and mitigated, respectively, by lentiviral expression and pharmacological inhibition of EZH2/1; EZH2 (or EZH1) loss- and gain-of-function respectively attenuated and aggravated pro-IH SMC proliferative behaviors. Furthermore, while H3K27me3 ChIPseq signal magnified at P57 and ebbed at Ccnd1 and Uhrf1 after injury, silencing either EZH2 or EZH1 in SMCs up-regulated P57 and down-regulated Ccnd1 and Uhrf1.In summary, our results reveal an upsurge of EZH2/H3K27me3 after angioplasty, BRD4’s control over EZH2 expression, and non-redundant EZH2/1 functions. As such, this study unravels angioplasty-induced loci-specific H3K27me3/ac redistribution in the epigenomic landscape rationalizing BRD4/EZH2-governed pro-IH regulations.</jats:p
A hierarchical and collaborative BRD4/CEBPD partnership governs vascular smooth muscle cell inflammation
Partnership between epigenetic reader BRD4 and transcription factor CEBPD
AbstractVascular smooth muscle cell (SMC) state/phenotype transitions underlie neointimal hyperplasia (IH) predisposing to cardiovascular diseases. Bromodomain protein BRD4 is a histone acetylation reader and enhancer mark that co-activates transcription elongation. CCAAT enhancer binding protein delta (CEBPD) is a transcription factor typically studied in adipogenesis and immune cell differentiation. Here we investigated the association between BRD4 and CEBPD in SMC state transition.Chromatin immunoprecipitation sequencing (ChIPseq) showed enrichment of BRD4 and histone acetylation (H3K27ac) at Cebpd and enhancer in rat carotid arteries undergoing IH. In vitro, BRD4 silencing with siRNA reduced SMC expression of CEBPD. Bromodomain-1 but not bromodoamin-2 accounted for this BRD4 function. Endogenous BRD4 co-IP’ed with CEBPD; Cebpd promoter and enhancer DNA fragments co-IP’ed with CEBPD or endogenous BRD4 (ChIP-qPCR). These co-IPs were abolished by the BRD4 bromodomain blocker JQ1. TNFα upregulated both BRD4 and CEBPD. Silencing CEBPD averted TNFα-induced inflammatory SMC state transition (heightened IL-1β, IL6, and MCP-1 mRNA levels), so did JQ1. CEBPD overexpression increased PDGFRα preferentially over PDGFRβ; so did TNFα, and JQ1 abolished TNFα’s effect.Our data reveal a BRD4/CEBPD partnership that promotes CEBPD’s own transcription and inflammatory SMC state transition, thus shedding new light on epigenetic reader and transcription factor cooperative actions in SMC pathobiology.</jats:p
Angioplasty induces epigenomic remodeling in injured arteries
Neointimal hyperplasia/proliferation (IH) is the primary etiology of vascular stenosis. Epigenomic studies concerning IH have been largely confined to in vitro models, and IH-underlying epigenetic mechanisms remain poorly understood. This study integrates information from in vivo epigenomic mapping, conditional knockout, gene transfer and pharmacology in rodent models of IH. The data from injured (IH-prone) rat arteries revealed a surge of genome-wide occupancy by histone-3 lysine-27 trimethylation (H3K27me3), a gene-repression mark. This was unexpected in the traditional view of prevailing post-injury gene activation rather than repression. Further analysis illustrated a shift of H3K27me3 enrichment to anti-proliferative genes, from pro-proliferative genes where gene-activation mark H3K27ac(acetylation) accumulated instead. H3K27ac and its reader BRD4 (bromodomain protein) co-enriched at Ezh2; conditional BRD4 knockout in injured mouse arteries reduced H3K27me3 and its writer EZH2, which positively regulated another pro-IH chromatin modulator UHRF1. Thus, results uncover injury-induced loci-specific H3K27me3 redistribution in the epigenomic landscape entailing BRD4→EZH2→UHRF1 hierarchical regulations. Given that these players are pharmaceutical targets, further research may help improve treatments of IH.</jats:p
