164 research outputs found

    A Magnetically Coupled Cryogenic Pump

    Get PDF
    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into the pump, and the pump was successfully operated meeting all expected operating parameters. Unique pump sub-assembly parts were designed and manufactured by the CTL using specialized materials determined to be superior for cryogenic thermal applications under the pump design conditions. This work is a proof-of-concept/proof-of-operation of the pump only. Other known internal design modifications to the pump should be accomplished for the long-term use of the pump. An upscaled version of this pump, which is under development and testing at the CTL, can be used either for current or future vehicle loading or for vehicle replenishment. Scaling of this pump can be easily accomplished

    Modular, Rapid Propellant Loading System/Cryogenic Testbed

    Get PDF
    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirement

    Book Reviews

    Get PDF

    Strain Sensors, Methods of Making Same, and Applications of Same

    Get PDF
    In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased

    Book Reviews

    Get PDF

    Applying Model-based Diagnosis to a Rapid Propellant Loading System

    Get PDF
    The overall objective of the US Air Force Research Laboratory (AFRL) Rapid Propellant Loading (RPL) Program is to develop a launch vehicle, payload and ground support equipment that can support a rapid propellant load and launch within one hour. NASA Kennedy Space Center (KSC) has been funded by AFRL to develop hardware and software to demonstrate this capability. The key features of the software would be the ability to recognize and adapt to failures in the physical hardware components, advise operators of equipment faults and workarounds, and put the system in a safe configuration if unable to fly. In December 2008 NASA KSC and NASA Ames Research Center (ARC) demonstrated model based simulation and diagnosis capabilities for a scaled-down configuration of the RPL hardware. In this paper we present a description of the model-based technologies that were included as part of this demonstration and the results that were achieved. In continuation of this work we are currently testing the technologies on a simulation of the complete RPL system. Later in the year, when the RPL hardware is ready, we will be integrating these technologies with the real-time operation of the system to provide live state estimates. In future years we will be developing the capability to recover from faulty conditions via redundancy and reconfiguration

    Synthesis and Evaluation of New Cathepsin D Inhibitors

    Get PDF
    Cathepsin D, a lysosomal aspartic protease, has been suggested to play a role in the metastatic potential of several types of cancer A high activated cathepsin D level in breast tumor tissue has been associated with an increased incidence of relapse and metastasis. High levels of active cathepsin D have also been found in colon cancer, prostate cancer, uterine cancer, and ovarian cancer. Hydroxyethyl isosteres with cyclic tertiary amine have proven to be clinically useful as inhibitors of aspartyl proteases, such as cathepsin D and the HIV1 aspartyl protease. Also cathepsin D has recently been associated with the development of Alzheimer\u27s disease. Specific proteinase inhibitors, useful in investigations of the mechanisms and pathways of intracellular protein degradation, could lead to the development of therapeutic agents for treatment of many types of carcinomas as well as Alzheimer\u27s disease. The design and the synthesis of (hydroxyethyl)amine isostere inhibitors with the cyclic tertiary amines is described. The IC-50 and apparent Ki values for several cathepsin D inhibitors are reported

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Native soils with their microbiotas elicit a state of alert in tomato plants

    Get PDF
    Several studies have investigated soil microbial biodiversity, but understanding of the mechanisms underlying plant responses to soil microbiota remains in its infancy. Here, we focused on tomato (Solanum lycopersicum), testing the hypothesis that plants grown on native soils display different responses to soil microbiotas. Using transcriptomics, proteomics, and biochemistry, we describe the responses of two tomato genotypes (susceptible or resistant to Fusarium oxysporum f. sp. lycopersici) grown on an artificial growth substrate and two native soils (conducive and suppressive to Fusarium). Native soils affected tomato responses by modulating pathways involved in responses to oxidative stress, phenol biosynthesis, lignin deposition, and innate immunity, particularly in the suppressive soil. In tomato plants grown on steam‐disinfected soils, total phenols and lignin decreased significantly. The inoculation of a mycorrhizal fungus partly rescued this response locally and systemically. Plants inoculated with the fungal pathogen showed reduced disease symptoms in the resistant genotype in both soils, but the susceptible genotype was partially protected from the pathogen only when grown on the suppressive soil. The ‘state of alert’ detected in tomatoes reveals novel mechanisms operating in plants in native soils and the soil microbiota appears to be one of the drivers of these plant responses
    • 

    corecore