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Summary 33 

 Several studies have investigated soil microbial biodiversity, but comprehension 34 

of the mechanisms underlying plant responses to soil microbiota remains in its infancy. 35 

We focused on tomato (Solanum lycopersicum), testing the hypothesis that plants grown 36 

on native soils display different responses to soil microbiotas. 37 

 Using transcriptomics, proteomics, and biochemistry, we describe the responses 38 

of two tomato genotypes (susceptible or resistant to Fusarium oxysporum f.sp 39 

lycopersici) grown on an artificial growth substrate and two native soils (conducive and 40 

suppressive to Fusarium).  41 

 Native soils affected tomato responses by modulating pathways involved in 42 

responses to oxidative stress, phenols biosynthesis, lignin deposition, and innate 43 

immunity, particularly in the suppressive soil. In tomato plants grown on steam-44 

disinfected soils, total phenols and lignin significantly decreased. The inoculation of a 45 

mycorrhizal fungus partly rescued this response locally and systemically. Plants 46 

inoculated with the fungal pathogen showed reduced disease symptoms in the resistant 47 

genotype in both soils, but the susceptible genotype was partially protected from the 48 

pathogen only when grown on the suppressive soil.  49 

  The "state of alert" detected in tomatoes reveals novel mechanisms operating in 50 

plants in native soils and the soil microbiota appears to be one of the drivers of these 51 

plant responses.  52 

 53 

Key words 54 

Arbuscular mycorrhizal fungi, Defence responses, Lignin biosynthesis, Microbiota, 55 

Suppressive and conducive soils, Susceptible and resistant genotypes, Tomato. 56 

 57 
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Introduction  58 

Crops, like their wild relatives, face many stresses, depending on the soil where they 59 

grow, the available nutrients, and other environmental conditions (Mundt, 2002). When 60 

grown as genetically homogeneous monocultures, crops are usually more susceptible to 61 

severe disease outbreaks than those grown in mixed cultivation. To decrease crop losses 62 

to disease, breeders have developed resistant varieties that have morphological and 63 

chemical barriers or activate defence responses to pathogens (Agrios, 2005).  64 

Although much research has focused on the effects of plant genotype, the microbiota 65 

has recently emerged as an important factor in disease resistance. Plants, like animals, 66 

have their own microbiota, which can have a powerful effect on their health. Indeed, 67 

many physiological functions require the presence of these mostly benign microbes and 68 

the establishment of specific plant–microbe relationships (Ash & Mueller, 2016). In the 69 

plant microbiota, bacteria and fungi with beneficial functions, such as root symbionts 70 

and growth-promoting rhizobacteria, coexist with endophytes, saprotrophic microbes, 71 

and pathogens. Several studies on the plant microbiota have focused on identifying the 72 

extraordinary diversity of microbes present on both roots and epigeous organs 73 

(Bulgarelli et al., 2012; Bai et al., 2015; Coleman-Derr et al., 2016), while others have 74 

examined the influence of the plant’s genotype on the composition of the microbiota 75 

(Lundberg et al., 2012; Zgadzaj et al., 2016). However, few plant studies have sought to 76 

understand how plants build up their microbiota (Lebeis et al., 2015) or whether there is 77 

a relationship between microbiota, plant genetics, and nutrient availability (Horton et 78 

al., 2014; Hacquard et al., 2017; Castrillo et al., 2017). 79 

A complex interaction of biotic and abiotic factors, such as soil structure, nutrient and 80 

water availability, microbiota (including pathogens and symbionts), and plant genotype, 81 

affects plant productivity. To begin to untangle these complex interactions, we focused 82 

on tomato (Solanum lycopersicum), a relevant crop model plant, and tried to understand 83 

how plants respond when grown on native soils, as part of a larger project also covering 84 

microbial diversity (Poli et al., 2016). Our hypotheses were: 1) microbiotas contained in 85 

different soils may trigger different plant responses and 2) different plant genotypes 86 

may respond differently to different soils and/or microbiotas. With the identification of 87 

the factors that govern plant responses, such hypotheses could allow us to better 88 

describe plant responses in conditions closer to those found in the field, rather than in 89 
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the lab (Poorter et al., 2016). 90 

To test these hypotheses, we investigated the molecular responses of two tomato 91 

genotypes, one susceptible to the soil-borne pathogen Fusarium oxysporum f. sp 92 

lycopersici (FOL) and one resistant. We grew these two cultivars in two soils of 93 

different geographical origins, history, biological properties (suppressive or conducive 94 

to FOL) and cultivable fungal communities, but comparable textures and nutrient 95 

profiles (Poli et al., 2016). As a control, we used a steam-disinfected growth substrate 96 

routinely used in tomato greenhouses. Transcript profiling by next-generation 97 

sequencing analyses showed that native soil components elicit an alert status in the plant 98 

by enhancing the induction of genes involved in defence responses, as compared with 99 

plants grown in a disinfected substrate. The disease-suppressive soil was indeed more 100 

effective in priming resistance supporting the hypothesis that microbiotas contained in 101 

different soils may trigger different plant responses. By contrast, the second hypothesis 102 

( plant genotypes may respond differently to different soils and/or microbiotas) was not 103 

confirmed, since significant transcriptomics differences were not found betwee the two 104 

plant genotypes. Inoculation of an arbuscular mycorrhizal fungus (AMF) in the steam-105 

disinfected soils induced similar responses, suggesting that the soil microbiota was one 106 

of the first drivers of the defence responses. Only under pathogen pressure did the plant 107 

genotype play a relevant role. These findings, indicate that biotic factors, more than 108 

abiotic, elicit specific responses in tomato grown in native soils. 109 

 110 

Materials and Methods 111 

Plant, soils, and experimental design  112 

Two commercially relevant tomato genotypes, ‘Cuore di Bue’ and ‘Battito’ were 113 

selected. They are genetically related, being both ‘Oxheart’-type Heirloom varieties 114 

(Gioia et al., 2010). Seeds were purchased from Ingegnoli (Milano, Italy). ‘Battito’ and 115 

‘Cuore di Bue’ are resistant and susceptible, respectively, to FOL races 1 and 2, as 116 

stated by the producer and verified in a previous study (Poli et al., 2016). To remove the 117 

seed microbiota (Shade et al., 2017), in all experiments seeds were disinfected as detailed 118 

in Chialva et al. (2016), at least removing the seed ectosphere. Soils used were the same 119 

as those used by Poli et al. (2016). Albenga (AL) and Rosta (RO) soils were selected 120 

from two Italian regions on the basis of their comparable textures and nutrient profiles, 121 
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but different histories (agricultural versus meadow soil) and biological properties. Poli 122 

et al. (2016) have shown in fact that plants grown on AL displayed a moderate ability to 123 

suppress FOL growth whereas plants grown on RO allowed more FOL growth, leading 124 

to the conclusion that AL can be considered a suppressive soil and RO a conducive soil. 125 

In addition, Poli et al. (2016) characterized cultivable fungal communities of both soil 126 

revealing that the suppressive AL soil showed a higher load in Fusarium spp., Phoma 127 

spp., Pyrenochaetopsis decipiens, Sarocladium strictum, and Trichoderma spp., whilst 128 

the RO conducive one was richer in Trichoderma spp., Penicillium spp., S. strictum, and 129 

Fusarium spp.  130 

In the current experiments, a control substrate (Pomix2, Evergreen, Moncalieri, Italy), 131 

which contains a mixture of peat and perlite, was used. This substrate was disinfected 132 

with fluent-steam at 100°C for 40 min, followed by 24 h at temperature higher than 133 

80°C, before use. After the disinfection protocol, no cultivable microbes were detected 134 

(data not show). 135 

Three experiments were conducted. Experiments 1 and 3 were performed in the 136 

greenhouse and Experiment 2 was performed under controlled conditions in a growth 137 

chamber. Experiments 1 and 3 were set up in pots using the two tomato genotypes, and 138 

plant growing conditions were the same as those described in Poli et al. (2016). To 139 

investigate the plant transcriptomic response to native soils, microcosms were set-up 140 

under greenhouse condition (Experiment 1). ‘Battito’ and ‘Cuore di Bue’ tomato 141 

genotypes were used and plants were sampled after 30 days. Seedlings were grown in 142 

the two soils, AL and RO, plus the steam-disinfected growth substrate as a control 143 

(CONT) (Poli et al., 2016). The roots from six plants for each substrate were pooled 144 

together, freeze-dried and three pools for each substrate used as replicates for RNA-seq 145 

analysis.  146 

For Experiment 2, which aimed to validate transcript profilings data by performing 147 

molecular analysis and quantifying phenols and lignin, three subsets of plants 148 

maintained in a growth chamber were investigated: a) one set of ‘Cuore di Bue’ grown 149 

in the three substrates, as for Experiment 1, b) one set of seedlings maintained in the 150 

steam-disinfected native soils, processed as described for the CONT condition in 151 

Experiment 1, and c) a set grown as in conditions a and b with the addition of 30% 152 

diluted monospecific inoculum of the arbuscular mycorrhizal fungus (AMF) 153 
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Funneliformis mosseae (MycAgro Lab. Dijon, France). Seedlings were transferred into 154 

10x10x12 cm plastic pots, maintained under controlled temperature and light conditions 155 

[14-h light (24°C)/10-h dark (20°C)] and watered twice a week with tap water. Five 156 

replicates per condition were performed and plants sampled after 90 days.  157 

For Experiment 3, which aimed to understand the role of tomato genotypes, the virulent 158 

FOL strain MUT350 was added by mixing the soil with a talc powder containing FOL 159 

chlamydospores, at the final rate of 3×104 chlamydospores mL-1 of soil (Srinivasan et 160 

al., 2009). Five replicates per condition were considered; plants were growing in a 161 

greenhouse and sampled after fruit set (120 days).  162 

In Experiment 2, the presence of inoculated arbuscular mycorrhizal fungi (AMF) 163 

was assessed on fresh roots (Trouvelot et al., 1986) as described in Chialva et al. (2016) 164 

observing 60 cm of roots per plant. 165 

 166 

RNA extraction and plant transcriptome analysis (Illumina RNA-seq) 167 

In order to study the plant transcriptome under the native soils and the control substrate 168 

conditions, material obtained in Experiment 1 was subjected to RNA-seq. The roots 169 

were washed in distilled water, blotted on filter paper, frozen in liquid nitrogen and 170 

freeze-dried overnight. Total RNA was extracted using a modified 'pine-tree' method 171 

(Chang et al., 1993) with the addition of 2% PVPP to the extraction buffer (Guether et 172 

al., 2009). RNA integrity (RIN) and concentration were double-checked (after 173 

extraction and before sequencing) using the 2100 Bioanalyzer system (Agilent 174 

Technologies) discarding samples with a RIN value <7. Details on library preparation, 175 

sequencing, and bioinformatics are provided in Methods S1. 176 

 177 

Proteome profiling 178 

To complement the transcriptomic data, proteome profiling was performed on the same 179 

material used for RNA-seq, but limited to the 'Cuore di Bue' genotype. Total proteins 180 

were extracted and analysed by LC-MS/MS on Q-Exactive Orbitrap (Bioproximity Inc. 181 

USA). Further details are provided in Methods S2.  182 

 183 

Functional enrichment and KEGG pathway analysis 184 

GO terms overrepresented in differentially expressed gene (DEG) lists were identified 185 
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in R statistical programming (R Core Team, 2017) in RStudio GUI (RStudio Team, 186 

2016) using the GOseq R Bioconductor package v1.15 (Young et al., 2010) (false 187 

discovery rate, FDR<0.1). InterPRO and KEGG pathway terms enriched among DEGs, 188 

differentially expressed proteins (DEPs), or gene ID subsets were identified using the 189 

'enricher' function in the clusterProfiler R package (Yu et al., 2012) (P<0.05). Mapping 190 

between gene ID (SL.2.4) and GO, InterPro, or KEGG entries was retrieved using 191 

BiomaRT queries on Ensembl Plants website (http://plants.ensembl.org). Z-score 192 

semantic space was calculated according to Walter et al. (2015). Expressed genes in 193 

different contrasts were mapped into the relevant KEGG pathway incorporating color-194 

coded expression values using the pathview R package v1.23 (Luo et al., 2013) as 195 

detailed in Matić et al. (2016). 196 

  197 

RT-qPCR analysis 198 

To validate RNA-seq data, and to test DEGs emerged from RNAseq in Experiment 2 199 

and 3, reverse transcription quantitative PCR (RT-qPCR) assays were performed on a 200 

set of genes listed in Table S1 together with the used primers. RNA was isolated using 201 

the modified ‘pine-tree method’ as described above. Material was quality-checked, 202 

processed to remove DNA, and retrotranscribed as described in Chialva et al. (2016). 203 

RT-qPCR amplifications and data analysis were performed as described in Methods S3. 204 

 205 

Quantification of lignin and total phenols  206 

Since the KEGG pathway analysis and the proteomics profiling identified lignin and 207 

phenol metabolism as differentially expressed in tomatoes growing in the three 208 

substrates, these compounds were quantified by using plants from the Experiment 2. 209 

Lignin was measured in protein-free cell wall material using the acetyl bromide method 210 

by Hatfield et al. (1996) as described in Moreira Vilar et al. (2014). Ten mg of each 211 

cleaned cell-wall sample was digested in 0.5 ml of 25% acetyl bromide (v/v in glacial 212 

acetic acid) at 70°C for 30 min. Samples were then cooled on ice and 0.9 ml of 2 M 213 

NaOH and 0.1 ml of hydroxylamine-HCl was added. Four ml of glacial acetic acid was 214 

added to the reaction and after centrifugation (2000xg, 10 min) extracts were diluted 1:4 215 

and A280 measured using 10-mm quartz cuvettes. A standard curve was generated using 216 

Alkali Lignin (Sigma, 370959) (R2>0.99) and results expressed as mg g-1 cell wall 217 
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(CW). 218 

Total phenols (TPs) were extracted and quantified using a modified Folin-219 

Ciocalteu (F-C) assay (Ainsworth & Gillespie, 2007) as described in Zouari et al. 220 

(2014). Results were expressed as mg gallic acid equivalents (GAE) g-1 of tissue dry 221 

weight (DW) using serially diluted gallic acid (Sigma, #G7384) standard solutions from 222 

500 to 7.8 mg/l (R2>0.99). Spectrophotometric analyses were performed using a 223 

Beckman DU 530 UV/VIS spectrophotometer on three to five biological replicates with 224 

three technical replicates each. 225 

 226 

Statistical analysis 227 

Statistical tests were performed in the R statistical programming environment (R Core 228 

Team, 2017) using Rstudio GUI (RStudio Team, 2016). Data normality and 229 

homoschedasticity were tested using Shapiro-Wilk (Shapiro & Wilk, 1965) and 230 

Levene’s test (Levene, 1960) in the 'stats' and 'car' (Fox & Weisberg, 2011) respectively 231 

(P<0.05). According to data distributions, ANOVA for normal homoschedastic data or 232 

Kruskal-Wallis test for non-normal homoschedastic data (Kruskal & Wallis, 1952) were 233 

adopted from the custom R package 'stats' at P<0.05. Pairwise comparisons between 234 

treatments were performed when needed, using the appropriate post hoc tests. Tukey’s 235 

test (Tukey, 1949) in the package 'agricolae' (Mendiburu, 2016) was adopted for 236 

ANOVA and Dunn’s test (Dunn, 1964) in package 'FSA' (Ogle, 2016) for Kruskall-237 

Wallis, both at P<0.05. 238 

Principal commonent analysis (PCA) on RNA-seq libraries was performed using 239 

DESeq2:::plotPCA function in R (Love et al., 2014) and k-means clustering analysis in 240 

'stats' R package using 'kmeans' function (R Core Team, 2017) Variance partitioning 241 

analyses on transcriptome data sets was performed using the ‘varpar’ function in the 242 

‘vegan’ package (Oksanen et al., 2016). Genotype and soil factors were used as 243 

explanatory variables. Testable partitions were tested for significance using 244 

permutational ANOVA (999 permutation) on the RDA model (P<0.05). 245 

Graphical elaborations were performed using ggplot2 (Wickham, 2009) or 'graphics' 246 

package in R environment (R Core Team, 2017). 247 

 248 
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Data Availability 249 

Raw RNA-seq reads were submitted to the National Center for Biotechnology 250 

Information Sequence Read Archive (NCBI-GEO/SRA) under accession SRP126554. 251 

 252 

Results 253 

Native soils shape the plant root transcriptome 254 

In Experiment 1, we grew tomato plants on the three substrates, looking for specific 255 

effects of AL and RO native soils versus the CONT substrate. After 3 months, the plants 256 

were healthy on all soils. To examine the plant transcriptome, we sampled tomato roots 257 

from the two genotypes and three substrate conditions, extracted total RNA, and 258 

produced 18 Illumina RNA-seq libraries, yielding 11–27 million filtered reads (Table 259 

S2). The mean mapping rate on the tomato reference genome (Sato et al., 2012) was 260 

93% and we found that 23,759 genes out of 34,675 annotated in tomato were expressed 261 

in roots. Counts were further processed with DESeq2 for normalization and 262 

identification of differentially expressed genes (DEGs) among conditions. Clustering of 263 

normalized counts showed consistency among soil and genotype and all Pearson 264 

correlation coefficients for biological replicates were above 0.9 (Figure S1). 265 

To investigate the role of genotype and soil factors, we first performed 266 

multivariate analyses on normalized counts. Principal Component Analysis (PCA) with 267 

k-means clustering (Liu & Si, 2014) split RNA-seq libraries into three clusters (k=3) 268 

corresponding to the different soil types (RO, AL, and CONT) (Fig. 1a). By contrast, 269 

the analysis produced no clusters for genotype. Variance partitioning of the whole 270 

normalized read counts data set (Fig. 1b) confirmed the PCA ordination showing that 271 

the soil type significantly explained a large part of transcriptome variability (22% of 272 

variance explained, ANOVA, P<0.001), but the genotype, which explained 3% of 273 

variance, had no significant influence (ANOVA, P>0.05). 274 

We then focused on the DEGs (fold-change >2, FDR<0.05) among soil 275 

conditions (Figure S2). In all the contrasts, the majority of DEG transcripts were 276 

upregulated in native soils, compared with CONT (Fig. 1c, Figure S2). We validated the 277 

relative expression estimates for 17 DEGs shared among contrasts by using RT-qPCR 278 

and found a high correlation with RNA-seq (r2=0.85, P<0.001; Figure S3), validating 279 

our methodology. DEG analysis highlighted a similar number of DEGs when AL and 280 
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RO soils were compared with the CONT soil (969 and 847, respectively, Table S3) 281 

corresponding to around 4% of the tomato genes expressed in roots (Fig. 1d). However, 282 

the two contrasts shared only one-third of the DEGs (289), suggesting that each soil 283 

with its microbiota affects sets of tomato genes that only partly overlap. When the AL 284 

and RO data sets were directly compared (AL versus RO), the number of DEGs was 285 

lower (285 genes, corresponding to 1.2% of root transcripts) suggesting that in the two 286 

soils, the root transcription profile was largely shared. A similar trend was observed 287 

when the comparisons were performed to find enriched Gene Ontology (GO) (Fig. 1e, 288 

Table S4) and InterPro (Table S5) terms. 289 

 290 

Native soils modulate stress and defence responses in tomato roots 291 

To understand which tomato molecular components were affected by native soils, we 292 

focused on the shared set of 289 DEGs that responded in AL (suppressive) and RO 293 

(conducive) soils versus CONT substrate (FC>2, FDR<0.05) from Experiment 1 (Fig. 294 

1d, Table S6). This set contains mostly upregulated genes enriched in 19 GO and 38 295 

InterPro terms (FDR<0.05) (Fig. 1f). Both enrichment analyses detected the activation 296 

of general molecular defences against diverse environmental stresses in plants grown on 297 

native soil. The enriched GO terms (Figure S4a) included functions related to the 298 

apoplast (GO:0048046) and the response to oxidative stress (GO:0006979). Other 299 

enriched terms were related to the cell wall and nutrient transport, such as peroxidase 300 

activity (GO:0004601), metal ion binding (GO:0046872), metal ion transmembrane 301 

transporter activity (GO:0046873), acid phosphatase activity (GO:0003993), and 302 

transmembrane transport (GO:0055085). Similarly, analysis of enriched InterPro 303 

categories (Figure S4b) detected 24 categories, most of them related to cell-wall 304 

processes, such as laccases (IPR017761), type 1, 2, and 3 multicopper-oxidases 305 

(IPR011706, IPR011707, IPR001117), and plant peroxidases (IPR000823). Type III 306 

plant peroxidases, which are primarily involved in lignin biosynthesis (Weng & 307 

Chapple, 2010), were the most abundant class.  308 

When comparing the GO and InterPro terms enriched in AL versus RO soil 309 

(Fig.1d), we found only 1 GO term (‘apoplast’, GO:0048046) shared with the terms 310 

enriched in AL or RO versus CONT (19 enriched GO terms) and none of the previously 311 

found InterPro terms. Some interesting GO categories emerged (Figure S5a), such as 312 
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those related to general stress responses. When analysing InterPro enriched domains 313 

(Figure S5b), functional categories related to central metabolism and plant-pathogen 314 

interactions emerged. Among the enriched domains, transcripts encoding peptidase 315 

domains (IPR000668, IPR013128) were upregulated in RO, while those encoding 316 

chitin-binding (IPR001002) and glutaredoxin (IPR002109) domains were upregulated 317 

in AL. 318 

To support the transcriptomic data, we performed a proteome-profiling 319 

experiment analysing the same raw root material used for RNAseq. Since the genotype 320 

has a negligible role in shaping the plant response to soils (Fig.1b), we considered only 321 

the ‘Cuore di Bue’ genotype (FOL susceptible). The shared features between the 322 

proteome and transcriptome (Fig. 2) were either up- or down-regulated. The protein data 323 

sets obtained from the three contrasts were enriched in the ‘response to oxidative stress’ 324 

GO term, and in related functions such as metal binding, heme binding, and peroxidase 325 

activity (Fig. 2). Proteins belonging to these categories were upregulated in the AL soil 326 

when compared to the other two substrates, and slightly upregulated in RO soil when 327 

compared with the disinfected substrate, suggesting that plants grown in native 328 

conditions (i.e. field-collected, non-disinfected substrates) respond to oxidative stress, 329 

and that different native soils might trigger responses of different intensities. Among the 330 

proteins upregulated in both AL and in RO samples, the peroxidase class was highly 331 

represented, including numerous enzymes involved in phenylpropanoid biosynthesis. 332 

 333 

Phenylpropanoid metabolism is induced in both native soils 334 

To analyse the Experiment 1 data sets at a deeper level, we mapped RNA-seq and 335 

proteome log2 fold-change values onto KEGG pathways. When comparing gene 336 

expression in plants grown in native soils or in CONT, we found consistent regulation 337 

of several pathways involved in primary and secondary metabolism. However, when 338 

comparing soils with each other, we found only limited differences in the gene 339 

regulation in pathways dealing with central metabolism. With respect to primary 340 

metabolism, we found upregulation of the citrate cycle (sly00020) in both 341 

transcriptomic and proteomic data sets. Moreover, plants grown in AL soil, as compared 342 

with RO soil, showed differential regulation of some metabolic pathways in 343 

transcriptome data such as glycolysis (sly00010), starch and sucrose metabolism 344 
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(slyc00500) and amino acid metabolism (sly00260, sly00280, sly00290, sly00360). 345 

With respect to secondary metabolism, phenylpropanoid biosynthesis (sly00940) 346 

was strongly regulated in both data sets in all considered contrasts (Figure S6-8). 347 

Several key enzymes were significantly upregulated in roots grown in native soils, as 348 

compared with the CONT substrate. The phenylpropanoid pathway originates from 349 

phenylalanine and leads to the synthesis of many diverse compounds, from insoluble 350 

lignin to soluble compounds (including salicylic acid) involved in defence against UV 351 

light, herbivores, or pathogens, as well as in the attraction of pollinators (Almagro et al., 352 

2009; Fraser & Chapple, 2011). In addition to cell wall fortification, lignification is the 353 

first constitutive barrier against pathogen attack or abiotic stresses such as salinity 354 

(Neves et al., 2010). In the phenylpropanoid pathway, 4 genes coding for beta-355 

glucosidases (EC 3.2.1.21), which are involved in coumarin synthesis, and 14 genes 356 

coding for class III plant peroxidases (EC 1.11.1.7) were significantly induced, 357 

compared with their expression in plants grown on the CONT substrate. These genes 358 

were more induced in AL soil than in RO soil. Class III peroxidases were differentially 359 

expressed in both data sets. 360 

To confirm the induction of phenylpropanoid biosynthesis, we conducted 361 

independent tests (Experiment 2 a) to quantify lignin and total phenolics in plants grown 362 

under controlled conditions in the same three substrates used for the RNA-seq 363 

experiment (Fig. 3a, c). We detected a significant increase in the contents of lignin and 364 

total phenolics in AL and RO root samples, as compared with CONT, confirming the 365 

RNA-seq and proteome profiling. Furthermore, we validated the increased lignin 366 

content at a systemic level in leaves, although total phenolics were not changed in 367 

leaves (Fig. 3b, d). 368 

 369 

The two native soils have different effects on the expression of genes involved in 370 

plant–microbe interactions 371 

KEGG pathway analysis highlighted the differential involvement of plant–microbe 372 

interaction signalling (sly04626) in tomato roots from native soils versus the control 373 

conditions (Figure S9–11). In this case, suppressive and conducive soils led to different 374 

responses: genes involved in pathogen-associated molecular pattern (PAMP)-triggered 375 

immunity (PTI) were differentially regulated, with an upregulation in the moderately 376 



13 

suppressive AL soil when compared to RO. By contrast, the differential regulation of 377 

genes involved in Effector-Triggered Immunity (ETI) was not statistically supported. In 378 

particular, we found transcriptional responses to both fungal PAMPs (e.g. regulation of 379 

genes encoding cyclic nucleotide-gated channels, which mediate cytosolic calcium 380 

signals), and bacterial PAMPs, with the regulation of a Flagellin Sensing 2 gene 381 

(Solyc02g070890.2) belonging to the leucine-rich repeat receptor serine/threonine 382 

kinase (LRR-RLK) gene family (EC 2.7.11.1). 383 

Pathogenesis-related proteins (PRs), which are well-characterized molecular 384 

markers for systemic acquired resistance in several herbaceous plants (Zhang et al., 385 

2010) and for early plant responses to AMF (Pozo et al., 2015), were differentially 386 

expressed in both the transcriptome and proteome data sets. Among them, two 387 

chitinases (Solyc06g053380.2, Solyc11g072760.1), were upregulated in both native 388 

soils when compared with the disinfected CONT substrate. Other PRs were more 389 

upregulated in the AL soil compared with RO (Figure S9); for example, a class III 390 

chitinase (Solyc02g082920.2.1) and a CEVI-1 peroxidase, both belonging to the PR-9 391 

class (Solyc01g006300.2.1) were specifically induced in AL soil. PR-9s are commonly 392 

involved in the deposition of phenolics into the plant cell wall during pathogenesis. 393 

Both PR-9 proteins were described as markers of tomato resistance to fungal soil-borne 394 

pathogens, including Rhizoctonia solani (Taheri & Tarighi, 2012). 395 

Looking at other genes potentially involved in the response to biotic stresses, we 396 

found that expression of a polygalacturonase inhibitor protein (PGIP) 397 

(Solyc09g014590.2) was upregulated in both plants grown on native soils. PGIPs are 398 

extracellular leucine-rich repeat glycoproteins that can inhibit the activity of 399 

polygalacturonases produced by fungi and bacteria and trigger plant defence reactions 400 

(Federici et al., 2006).  401 

 402 

Disinfection of the native soils shows that the microbiota elicits phenylpropanoid 403 

and defence pathways  404 

Our transcriptomic and proteomic data, as also confirmed by biochemical data, 405 

indicated that tomatoes grown in both native soils have increased phenylpropanoid 406 

metabolism (Fig. 4, Figure S7-8). These plants also show activation of PTI and defence-407 

related pathways, with stronger activation in the AL soil (Figure S9). To test whether 408 
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such events were caused by the biotic or abiotic soil components, we grew 'Cuore di 409 

Bue' tomatoes for 90 days on steam-disinfected native soils (Experiment 2b). Under 410 

these conditions, the plants showed reduced total phenolics (P<0.05) in both root and 411 

leaf tissues, as well as less root lignin in AL soil (Fig. 4a, b).  412 

Since disinfection dramatically decreases the microbial presence (Lau & 413 

Lennon, 2011; Panke-Buisse et al., 2015), we tested whether this affected other 414 

molecular plant response. We took advantage of the RNA-seq results and selected a 415 

panel of genes that were related to phenylpropanoid metabolism, oxidative stress, and 416 

plant–pathogen interactions as markers of plant responses to native soils. The 417 

expression of these genes was investigated using RT-qPCR on plants growing on the 418 

two native soils before and after disinfection. We tested transcripts involved in PTI 419 

(Cyclic nucleotide-gated ion channel, Solyc01g095770.2, pathogenesis-related protein, 420 

Solyc01g106640.2 , Respiratory burst oxidase homolog protein, Solyc01g099620.2), 421 

phenylpropanoid biosynthesis (Caffeoyl-CoA O-metyltransfease, Solyc02g093230.2), 422 

abiotic (Gibberellin 3-beta-hydroxylase 1, Solyc06g066820.2) and oxidative stress 423 

responses (Superoxide dismutase, Solyc11g066390.1). The RNA-seq data were 424 

confirmed by RT-qPCR in native soils, because the investigated genes were upregulated 425 

in the AL soil, as compared to the conducive RO soil (P<0.05) (Fig. 5). By contrast, 426 

after disinfection, the transcripts did not reveal any significant difference. Only 427 

superoxide dismutase (SOD) expression remained higher in the disinfected AL than in 428 

the RO soil (Fig. 5). 429 

As a further step, we tested whether the induction of total phenolics and lignin 430 

observed in native soils can be ascribed to specific microbiota components, such as 431 

AMF, as already described in the literature (Rivero et al., 2015). To this end, we chose 432 

Funneliformis mosseae, the most-represented AMF species in both soils (unpublished 433 

results) and one of the best performing partners for tomato (Zouari et al., 2014), and we 434 

inoculated it into the disinfected soils (Experiment 2c). At 90 days after inoculation, we 435 

found a recovery of total phenolics, similar to the values measured in plants sampled 436 

from native soils. No differences emerged in lignin content, with the exception of roots 437 

from plants growing in AL, which showed a full recovery after AM inoculation (Fig 4c, 438 

d). 439 

 440 
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Introducing a pathogen: genes involved in PAMP-triggered immunity are 441 

activated in the suppressive soil 442 

To test whether putative priming defences induced by native soils and their associated 443 

microbiota could counteract FOL disease, we set up a long-term greenhouse experiment 444 

(Experiment 3). Tomato plants from both genotypes (‘Cuore di Bue’ and ‘Battito’) were 445 

grown in AL and RO soils in the presence and the absence of a virulent strain of FOL 446 

(MUT 350). Plants were grown for 120 days until fruit-set. ‘Battito’ showed the 447 

expected resistant phenotype (Figure S12), but the response of ‘Cuore di Bue’ depended 448 

on the soil type, since a better performance was detected on the weakly suppressive AL 449 

soil (Figure S13). 450 

To test the expression profile of some DEGs identified as being involved in the 451 

PTI response (Figure S9), we conducted RT-qPCR on the ‘Cuore di Bue’ genotype with 452 

or without pathogen inoculation (FOL+ and FOL-, Fig. 6). In AL versus RO samples, 6 453 

out of seven tested PTI genes were upregulated (P<0.05) in the absence of FOL (Fig. 454 

6a), confirming the RNA-seq results. Two out of seven genes (CML and WRKY22) were 455 

further upregulated in response to FOL inoculation (Fig. 6b). This trend was more 456 

evident when comparing FOL+ vs FOL- for each individual soil: in the suppressive AL 457 

soil, only one transcript, encoding a Plant Respiratory Burst Oxidase Homolog 458 

(Solyc01g099620.2), was induced by FOL inoculation (Fig. 6c). Three out of seven 459 

genes were upregulated in the permissive RO soil, revealing that the 'Cuore di Bue' 460 

genotype reacted more to the pathogen in RO (Fig. 6d) under conducive conditions. 461 

 462 

Discussion 463 
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Notwithstanding the emerging appreciation of the biological importance of the 464 

microbiome concept, plant responses to complex microbial communities have rarely 465 

been examined: many reports have carefully investigated the microbial biodiversity 466 

associated with plants by using metabarcoding or metagenomics approaches (Bulgarelli 467 

et al., 2015), but have generally neglected the effect on plant functions. Our 468 

experiments, on two tomato genotypes growing in two native soils with different 469 

physiochemical and biological properties (Poli et al., 2016), have revealed some novel 470 

plant responses, thus helping us to understand how crops respond to the stimuli that 471 

originate from the biotic and abiotic components of soils. 472 

Transcriptomics and proteomics demonstrated that the overall characteristics of the 473 

substrate contribute more than plant genotype to shaping the molecular responses in 474 

tomato roots, and that only few genes respond differently in tomato plants grown in the 475 

two different native soils. This means that, notwithstanding the significant abiotic and 476 

biotic differences of the soils (Poli et al., 2016), tomato roots seem to display a broadly 477 

similar expression profile when grown in native soils, as compared with roots grown in 478 

the control substrate. Soil is considered the primary force driving plant–microbiota 479 

diversity (Jeanbille et al., 2016); our present data reveal that soil is also a key factor that 480 

shapes the molecular profile in tomato.  481 

 482 

Soil microbiota has a crucial role in the elicitation of phenylpropanoid pathways  483 

Transcriptomics and proteomics data from Experiment 1 led to a second novel result: 484 

many of the soil-responsive genes that are similarly modulated in the two native soils 485 

compared to an artificial, disinfected substrate, have biological relevance. These genes 486 

are mainly involved in the activation of phenylpropanoid metabolism and other defence 487 

responses, suggesting that tomato plants activate a pre-alert status, which can be 488 

correlated with the biotic and abiotic components of the native soils Similar responses 489 

were also detected on Arabidopsis leaves inoculated with non-pathogenic phyllosphere 490 

commensals (Vogel et al., 2016). 491 

Phenylpropanoid metabolism is at the intersection of some of the most crucial 492 

pathways in plants, from the construction of structural barriers (cell wall and 493 

lignification) to the activation of many defence responses (Fraser & Chapple, 2011; 494 

Yogendra et al., 2015). Some studies have linked plant–microbiota interactions (or even 495 
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selected components of the microbiota, such as AMF) with an increase in the 496 

production of lignin and phenolics (Rivero et al., 2015; Beckers et al., 2016). Here, we 497 

quantified these compounds and found that tomatoes grown in native soils produce 498 

more phenols and lignin in their roots and leaves. 499 

In an attempt to disentangle the effect of the soil physiochemical features from 500 

the effect of the microbiota on local and systemic responses, in Experiment 2 we 501 

measured total phenolics and lignin content of plants grown in native soils, where a 502 

previous disinfection treatment led to an important reduction of endogenous microbes 503 

(Lau & Lennon, 2011; Panke-Buisse et al., 2015). Here, we observed a significant 504 

decrease in total phenolics, while the decrease in the lignin content was significant only 505 

in the AL soil. The inoculation of the AM fungus Funneliformis mosseae led to an 506 

increase of phenolics back to the original values in the roots. Taken as a whole, the 507 

experiments provide evidence that the microbiota, more than the chemico-physical soil 508 

features, has a crucial role in the elicitation of phenylpropanoid pathway, and that the 509 

AM fungus F. mosseae alone largely rescues the activation of this metabolism. Indeed, 510 

previous papers have reported that AM fungi activate different steps of the 511 

phenylpropanoid pathway (Rivero et al., 2015; Beckers et al., 2016; Bruisson et al., 512 

2016) 513 

 514 

The efficiency of the PTI response elicited by soil microbiota depends on soil 515 

features and plant genotypes 516 

Plants have developed a complex immune system to protect themselves against 517 

pathogen attack (Jones & Dangl, 2006). In addition to pathogen-associated molecular 518 

pattern (PAMP)-Triggered Immunity (PTI) and Effector-Triggered Immunity (ETI), 519 

multiple pathways, including those involving salicylic acid signalling and MAP kinase 520 

cascades, form a robust network for plant immunity (Tsuda et al., 2013). To date, 521 

however, our understanding of the mechanisms governing plant immunity comes from 522 

experiments conducted under controlled conditions, where specific, known microbes are 523 

added and their effects on plant immunity are determined as a result of gene–gene 524 

interactions (Thomma et al., 2011; Pieterse et al., 2014). Our data, which considered the 525 

plant response to the whole microbiota, only revealed the elicitation of PTI, the first and 526 

weaker form of defence in response to a microbial pathogen. However, our results did 527 
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not show elicitation of other pathways by native soils. The activation of the PTI-related 528 

genes likely reflects the plant response to multiple signals from the microbial 529 

communities thriving in the diverse substrates. The specific transcriptomic/proteomic 530 

picture we obtained might reflect the plant response to long-lasting stimuli produced by 531 

a complex soil microbiota. Interestingly, the differential expression of marker genes for 532 

plant–microbe interactions, including those for PTI, were detected in plants growing in 533 

AL vs RO soil, but disappeared in the plants grown in the two disinfected soils 534 

(Experiment 2 b). This strongly suggests that the components of the plant microbiota 535 

are directly involved in eliciting priming responses. Taken as a whole, these findings 536 

validated our first hypothesis, i.e., that different soils with their diverse microbiotas 537 

trigger differential plant responses.  538 

Many recent reports have revealed that plant genotypes affect the establishment of 539 

different microbiotas (Bulgarelli et al., 2015; Zgadzaj et al., 2016), but the opposite 540 

question (do different plant genotypes respond differently to the same soil microbiota?) 541 

remains to be answered. Our experiments did not reveal any change in the 542 

transcriptomic profiles of ‘Cuore di Bue’ and ‘Battito’ genotypes, which differ in being 543 

susceptible and resistant to FOL, respectively. A previous detailed mycoflora analysis 544 

revealed that many Fusaria were present in both AL and RO soils, but pathogenic 545 

strains were not isolated (Poli et al., 2016), providing a functional explanation for the 546 

overlap in the transcriptomic profiles; in the absence of the pathogen, the plant 547 

responses are very similar. With Experiment 3, we directly tested the relevance of the 548 

two genotypes by introducing the pathogen, and by looking at the phenotype in a long-549 

lasting experiment. The resistant ‘Battito’ performed better in the presence of the 550 

pathogen in all soil conditions, as expected, and confirming previous tests (Poli et al., 551 

2016). Also, the susceptible ‘Cuore di Bue’ elaborated defences, which allowed it to 552 

produce fruits in both the soils. However, measuring the expression of PTI-related 553 

genes after 120 days of FOL exposure revealed a surprising result: PTI-related genes 554 

were mostly upregulated in "Cuore di Bue" plants grown in the conducive RO soil in 555 

the presence of the pathogen. By contrast, in the suppressive AL soil, where the PTI 556 

genes were already activated in the absence of the pathogen, important modifications 557 

were not detected. The data reveal that the two genotypes respond differently to the 558 

pathogen, as expected, but, in addition, the susceptible genotype modulates its defense 559 
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responses depending on the soil. The protective effect, elicited by the soil microbiota, is 560 

not sufficient, however, to efficiently defeat the pathogen and to guarantee the health of 561 

‘Cuore di Bue’ plants growing in the conducive RO soil. 562 

All together, these data suggest that in native soils and in the presence of heterogeneous 563 

microbial communities living in the plant ectosphere and endosphere, tomato plants 564 

modulate some of their metabolic pathways, among which phenylpropanoid metabolism 565 

and PTI pathway (Fig. 7). Tomato plants respond to both native soils by activating a 566 

first level of defences based on cell wall fortification. However, the PTI pathway is 567 

regulated differently accordingly to the disease-suppressiveness of the two soils. In the 568 

suppressive soil, these PTI-like responses are induced to higher levels, providing a 569 

protective shield when a pathogen such as FOL is added to the system. This result is in 570 

agreement with the concept of ‘general suppression’ suggested by Raaijmakers & 571 

Mazzola (2016). Our results agree with those of Vogel et al. (2016), who described a 572 

comparable defence response elicited by phyllosphere commensals on Arabidopsis 573 

thaliana. This confirms that the rules governing the responses to the microbiota are 574 

similar in different plant compartments. 575 

Next-generation sequencing techniques and the resulting data sets have provided 576 

us with many pieces of a complex puzzle, i.e. identification of tomato metabolic 577 

processes related to plant immunity, production of compounds related to cell-wall 578 

fortification and lignin. In conclusion, even if the puzzle is far from complete, we have 579 

started to reveal the multi-level mechanisms that operate in plants living in realistic 580 

conditions that are closer to those experienced by field-grown plants, rather than by 581 

plants grown in artificial growth substrates. These mechanisms bring into play multiple 582 

factors (soils, microbiotas, genotypes) that affect plant health, overcoming the 583 

reductionist approach of one-to-one interactions.  584 
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Figure legends 602 

Fig 1. Analysis of the root transcriptome of tomato (Solanum lycopersicum) plants 603 

grown in native and artificial soils. (a) PCA plot with k-means clustering of RNA-seq 604 

libraries showing the two principal components (PC1 and PC2), which separated the 605 

samples by soil type. K-means clusters (k=3) are represented by ellipses and group 606 

sequencing libraries by soils. In the legend, the first letter indicates genotype ('Cuore di 607 

Bue' or 'Battito') and the following letters represent the substrate (RO, AL, or CONT). 608 

(b) Donut plot showing the amount of transcriptome variability explained from soil 609 

(22%) and genotype (3%) factors. Data were tested using permutational ANOVA (999 610 

permutations, *P<0.001; ns = not significant). Collinearity between genotype and soils 611 

explained none of the variance. (c) Heatmap of DEGs (differentially expressed genes) 612 

across the three soil contrasts analysed with DESeq2 (FC>1, P<0.05) shows that native 613 

soils mostly upregulate transcription when compared to the control transcriptome from 614 

plants grown in disinfected soil. (d) Venn diagrams showing the number of shared 615 

DEGs categories (FDR<0.05) across the three main contrasts. (e) The 20 most-enriched 616 

GO categories shared between AL versus CONT (red bars) and RO versus CONT (blue 617 

bars). 618 

AL='Albenga' suppressive soil; RO='Rosta' conducive soil; CONT=neutral control soil. 619 

 620 

Fig. 2 Overlap of GO-categories enriched in both proteome and transcriptome 621 

experiments in tomato (Solanum lycopersicum) 'Cuore di Bue' genotype. The y-axis 622 

in the bubble plot represents the -log2 of adjusted P-value of proteome enrichment; the 623 
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x-axis shows the z-score computed on DEPs contained in each GO category (z-score > 624 

0 prevalence of upregulation, z-score < 0 prevalence of down-regulation). Categories 625 

from each of the three GO domains are indicated by colours (BP=’biological process’, 626 

CC=’cellular component’, MF=’molecular function’). Categories with log2 adj. P-value 627 

> 25 or z-score < -1 are labelled. The size of each bubble represents the number of 628 

differentially expressed proteins for each term. AL='Albenga' suppressive soil; 629 

RO='Rosta' conducive soil; CONT=neutral control soil. 630 

 631 

Fig. 3 Total phenols and lignin concentrations in tomato (Solanum lycopersicum) 632 

plants grown in native and artificial substrates. (a, b) Total phenols (TPs) in roots 633 

and leaves, respectively. (c, d) Lignin content in root and leaves, respectively. Letters 634 

indicate significant differences among treatments (ANOVA, Tukey's post-hoc test, 635 

P<0.05). TPs are expressed as mg of gallic acid equivalents (GAE) per grams of dry 636 

weight (DW) material. Lignin amount is expressed as mg per grams of cell-wall (CW) 637 

material. N=5. AL='Albenga' suppressive soil; RO='Rosta' conducive soil; 638 

CONT=neutral control soil. Boxplots display the median (horizontal line), the quartiles 639 

(boxes) and the 1.5-times interquartile range (whiskers). 640 

 641 

Fig. 4 Levels of total phenols and lignin in tomato (Solanum lycopersicum) 'Cuore 642 

di Bue' genotype grown in disinfected native soils and disinfected soils inoculated 643 

with F. mosseae. (a and b) Total phenols (TPs) in roots and leaves, respectively. (c and 644 

d) Lignin content in root and leaves, respectively. Letters indicate significant differences 645 

among treatments (ANOVA, Tukey's post-hoc test, P<0.05). TPs are expressed as mg of 646 

gallic acid equivalents (GAE) per grams of dry weight (DW) material. Lignin amount is 647 

expressed as mg per grams of cell-wall (CW) material. N=5. AL='Albenga' suppressive 648 

soil; RO='Rosta' conducive soil; CONT=neutral control soil. Boxplots display the 649 

median (horizontal line), the quartiles (boxes) and the 1.5-times interquartile range 650 

(whiskers). 651 

 652 

Fig. 5 RT-qPCR of native-soil induced gene expression in tomato (Solanum 653 

lycopersicum) plants under native and steam-disinfected treatments in suppressive 654 

versus conducive soils. Dotted red lines indicate the threshold at fold change=1. 655 

Asterisks indicate statistically supported differences (Kruskall-Wallis test at P<0.05). 656 



26 

Data are mean ± SD, n=3. CCoAOMT=Caffeoyl-CoA O-methyltransferase 657 

(Solyc02g093230.2); G3B=Gibberellin 3-beta-hydroxylase 1 (Solyc06g066820.2); 658 

SOD=superoxide dismutase (Solyc11g066390.1); Rboh=Respiratory burst oxidase 659 

homolog protein (Solyc01g099620.2); PR=Pathogenesis-related protein 660 

(Solyc01g106640.2); CNG=Cyclic nucleotide-gated ion channel (Solyc01g095770.2). 661 

 662 

Fig. 6 RT-qPCR of PTI-related gene expression in FOL-inoculated (FOL+) and 663 

non-inoculated (FOL-) tomato (Solanum lycopersicum) plants in both soils. (a, b) 664 

Relative expression of genes in AL versus RO under FOL- and FOL+ treatments; (c, d) 665 

Relative expression of genes in FOL+ versus FOL in AL and RO native soils. Dotted 666 

red lines indicate the threshold at fold change=1. Asterisks indicate statistically 667 

supported differences (Kruskall-Wallis test at P<0.05). Data are mean ± SD, n=3; 668 

FOL=Fusarium oxysporum f.sp. lycopersici.  AL='Albenga' suppressive soil; 669 

RO='Rosta' conducive soil. 670 

 671 

Fig. 7 Proposed model of tomato (Solanum lycopersicum) plant response to soil 672 

microbiota. The scheme illustrates the main pathways which are differentially 673 

regulated between the suppressive vs. conducive soil on the basis of transcriptomic and 674 

proteomics analysis. The highlighted pathways were validated with chemical 675 

quantification of total phenols and lignin, as well as RT-qPCR of genes involved on 676 

tomato defence on both native and disinfected soils. In this model, irrespectively of their 677 

genotype, tomato would perceive microbial MAMPS (as flagellin, flg22, and chitin) 678 

through specific receptors (FLS2 and CERK1, respectively) whose transcripts were 679 

upregulated. The signalling cascade would activate a PTI-like mechanism upregulating 680 

Cyclic nucleotide-gated channels (CNGCs) which increase the amount of cytosolic 681 

calcium, inducing in turn the expression of calmodulin (CaM)/CaM-like (CML) 682 

proteins and calcium-dependent protein kinases (CDPKs). Transcript profiling revealed 683 

other downstream events: an Rboh (Respiratory burst oxidase homolog) gene leads to a 684 

ROS burst, and to the activation of transcription factors as WRKY 22 and 33. We 685 

suggest that the latter elicits plant defences through the presence of pathogenesis-related 686 

proteins (PRs) and of the phenylpropanoid pathway. It would start with the up-687 

regulation of the phenylalanine ammonia lyase (PAL) enzyme, followed by the up-688 
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regulation of the caffeoyl-CoA O-methyltransferase (CCoAOMT) gene and of class III 689 

peroxidases (PRX (III)) which are directly involved in lignin and total phenolics (TPs) 690 

biosynthesis. All these pathways may confer an increased resistance against Fusarium 691 

oxysporum f.sp. lycopersici not only in the resistant genotype, but also in the susceptible 692 

one (long-term greenhouse Experiment 3). 693 

Rectangular splitted boxes represent the expression ratio (log2fold-change) in 694 

suppressive versus conducive soils contrast in ‘Cuore di Bue’ genotype for both 695 

transcripts (left box) and proteins (right box). Red colour represents upregulation, blue 696 

downregulation. 697 
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