5,431 research outputs found
OPTIMAL IRRIGATION PIVOT LOCATION ON IRREGULARLY SHAPED FIELDS
Although annual rainfall in the Southeast is adequate, its distribution is a potential constraint to agricultural production. Farmers require production information concerning efficient use of irrigation technology adapted to regional growing conditions. Selection of optimal position, size, and number of pivots in center pivot irrigation systems poses special problems on small, irregularly shaped fields. In the southeastern United States, field size and shape are often varied and irregular. A mixed integer programming model was constructed to assist in irrigation investment decisions. The model is illustrated using irrigated peanut production in southeast Alabama. Results indicate the importance of economic engineering considerations.Farm Management,
HOMO band structure and anisotropic effective hole mass in thin crystalline Pentacene films
The band dispersion of the two highest occupied molecular orbital
(HOMO)-derived bands in thin crystalline Pentacene films grown on Bi(001) was
determined by photoemission spectroscopy. Compared to first-principles
calculations our data show a significantly smaller band width and a much larger
band separation indicating that the molecular interactions are weaker than
predicted by theory--a direct contradiction to previous reports by Kakuta et
al. [Phys. Rev. Lett. 98, 247601 (2007)]. The effective hole mass m* at M-bar
is found to be anisotropic and larger than theoretically predicted. Comparison
of m* to field effect mobility measurements shows that the band structure has a
strong influence on the mobility even at room temperature where we estimate the
scattering rate to be tau ~3 fs.Comment: 20 pages, 4 figures, 1 table and appendi
Effect of Different Carbon and Nitrogen Inputs on Soil Chemical and Biochemical Properties in Maize-Based Forage Systems in Northern Italy
In agroecosystems, manure application and straw return affect carbon (C) and nitrogen (N) cycling and affect soil organic matter (SOM), nutrient supply and losses to the environment. We examined effects of different organic sources on crop production, N uptake and surplus and SOM in maize systems
Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors
After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog-chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high-resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low-volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel-specific VOC emission inventory that was scaled by burn-specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas-phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation-driven evaporation during up to 2 hr of equivalent atmospheric oxidation
Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment
Using angle-resolved photoelectron spectroscopy and ab-initio GW
calculations, we unambiguously show that the widely investigated
three-dimensional topological insulator Bi2Se3 has a direct band gap at the
Gamma point. Experimentally, this is shown by a three-dimensional band mapping
in large fractions of the Brillouin zone. Theoretically, we demonstrate that
the valence band maximum is located at the Brillouin center only if many-body
effects are included in the calculation. Otherwise, it is found in a
high-symmetry mirror plane away from the zone center.Comment: 8 pages, 4 figure
Electron-phonon coupling in crystalline Pentacene films
The electron-phonon(e-p) interaction in Pentacene (Pn) films grown on Bi(001)
was investigated using photoemission spectroscopy. The spectra reveal thermal
broadening from which we determine an e-p mass enhancement factor of lambda =
0.36 +/- 0.05 and an effective Einstein energy of omega_E = 11 +/- 4 meV. From
omega_E it is inferred that dominant contributions to the e-p effects observed
in ARPES come from intermolecular vibrations. Based on the experimental data
for lambda we extract an effective Peierls coupling value of g_eff = 0.55. The
e-p coupling narrows the HOMO band width by 15 +/- 8% between 75K and 300K.Comment: 19 pages, 5 figures and supplementary informatio
Hydrogen Two-Photon Continuum Emission from the Horseshoe Filament in NGC 1275
Far ultraviolet emission has been detected from a knot of Halpha emission in
the Horseshoe filament, far out in the NGC 1275 nebula. The flux detected
relative to the brightness of the Halpha line in the same spatial region is
very close to that expected from Hydrogen two-photon continuum emission in the
particle heating model of Ferland et al. (2009) if reddening internal to the
filaments is taken into account. We find no need to invoke other sources of far
ultraviolet emission such as hot stars or emission lines from CIV in
intermediate temperature gas to explain these data.Comment: 9 pages, 8 figures. Accepted for publication in MNRA
Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry
The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4), with analysis by two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS). The sensitivity and resolving power of GC×GC/TOFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measure ments for 722 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds detected from individual burns ranged from 129 to 474, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggesting that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, eleven sesquiterpenes were detected and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation
Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry
The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4) and analyzed by two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-ToFMS). The sensitivity and resolving power of GC x GC-ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements from 708 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds meeting the peak selection criteria ranged from 129 to 474 among individual burns, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggested that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, 11 sesquiterpenes were deteched and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation
The host galaxy of the z=2.4 radio-loud AGN MRC 0406-244 as seen by HST
We present multicolour Hubble Space Telescope images of the powerful z=2.4
radio galaxy MRC 0406-244 and model its complex morphology with several
components including a host galaxy, a point source, and extended nebular and
continuum emission. We suggest that the main progenitor of this radio galaxy
was a normal, albeit massive (M ~10^{11} solar masses), star-forming galaxy.
The optical stellar disc of the host galaxy is smooth and well described by a
S\'ersic profile, which argues against a recent major merger, however there is
also a point-source component which may be the remnant of a minor merger. The
half-light radius of the optical disc is constrained to lie in the range 3.5 to
8.2kpc, which is of similar size to coeval star forming galaxies.
Biconical shells of nebular emission and UV-bright continuum extend out from
the host galaxy along the radio jet axis, which is also the minor axis of the
host galaxy. The origin of the continuum emission is uncertain, but it is most
likely to be young stars or dust-scattered light from the AGN, and it is
possible that stars are forming from this material at a rate of
200^{+1420}_{-110} solar masses per year.Comment: Accepted for publication in MNRA
- …