196 research outputs found

    Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    Get PDF
    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented

    Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft, supplemental data

    Get PDF
    Computational aspects of (1) flutter optimization (minimization of structural mass subject to specified flutter requirements), (2) methods for solving the flutter equation, and (3) efficient methods for computing generalized aerodynamic force coefficients in the repetitive analysis environment of computer-aided structural design are discussed. Specific areas included: a two-dimensional Regula Falsi approach to solving the generalized flutter equation; method of incremented flutter analysis and its applications; the use of velocity potential influence coefficients in a five-matrix product formulation of the generalized aerodynamic force coefficients; options for computational operations required to generate generalized aerodynamic force coefficients; theoretical considerations related to optimization with one or more flutter constraints; and expressions for derivatives of flutter-related quantities with respect to design variables

    Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics

    Get PDF
    Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to add substantial solid and vaporized material to the atmosphere, but these conditions were not studied

    Computer simulations of 10-km-diameter asteroid impacts into oceanic and continental sites: Preliminary results on atmospheric passage, cratering and ejecta dynamics

    Get PDF
    A series of analytical calculations of large scale cratering events for both oceanic and continental sites were made in order to examine their effects on the target media and atmosphere. The first analytical studies that were completed consists of computer simulations of the dynamics of: (1) the passage of a 10 km diameter asteroid moving at 20 km/sec through the Earth's atmosphere, and (2) the impact cratering events in both oceanic and continental environments. Calculation of the dynamics associated with the passage of the asteroid through the atmosphere showed strong effects on the surrounding air mass. The calculations of the impact cratering events showed equally dramatic effects on the oceanic and continental environments. These effects are briefly discussed

    Counterfactuals and revisionism in historical explanation

    Get PDF
    This article addresses the role of counterfactuals in historical and ethnohistorical explanation. Drawing primarily on examples from the Conquest of Mexico, it argues (1) for a useful role for counterfactual analysis, not in writing fiction, but in assessing pivotal causation and proofing causal arguments; (2) for a clearer understanding of causation in historical records, especially of ethnohistorical subjects; and (3) for a way in which this perspective can be employed to argue for solidly grounded revisionist interpretations of events.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Insetos em presépios e as "formigas vestidas" de Jules Martin (1832-1906): uma curiosa manufatura paulistana do final do século XIX

    Get PDF
    Encontrados no Brasil desde os primórdios da colonização portuguesa, os presépios logo tiveram de adaptar-se à realidade local, circunstância muito propícia ao aparecimento de concepções heterodoxas e ao emprego de elementos exóticos da fauna e flora de cada região. Como registros envolvendo insetos são muito pouco comuns, chama a atenção que fêmeas de saúva, Atta sp. (Hymenoptera, Formicidae), tenham sido aproveitadas na composição de presépios no estado de São Paulo. Tendo subsistido pelo menos até a década 1960, os "presépios de formigas" existentes em cidades como Embu das Artes poderiam estar relacionados às "formigas vestidas" criadas por Jules Martin, curiosa manufatura paulistana do último quartel do século XIX.Present in Brazil since the beginning of Portuguese colonization, crèche nativity scenes were soon adapted to local reality, a propitious circumstance for the appearance of heterodox conceptions and the use of exotic elements of the fauna and flora peculiar to each region. As records about insects are very uncommon, it is noteworthy that females of leaf-cutting ants, Atta sp. (Hymenoptera, Formicidae), were used to compose crèche nativity scenes in São Paulo State. Having subsisted at least up to the decade of 1960, the "ant crèches" of cities such as Embu das Artes could be related to the then famous "dressed ants" created by Jules Martin, a curious manufacture of the city of São Paulo in the last quarter of the 19th century

    Recruitment of a SAP18-HDAC1 Complex into HIV-1 Virions and Its Requirement for Viral Replication

    Get PDF
    HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1H141A) was utilized. Incorporation of HDAC1H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link
    • …
    corecore