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COMPUTER MDDELING OF LARGE ASTEROID IWACTS INTO CONTINENTAL AND OCEANIC SITES: 
ATMOSPHERIC, CRATERING, AND EJECTA DYNAMICS; D.J. Roddy, U.S. Geological Survey, F l a g s t a f f ,  
Arizona; S.H. Schuster, M. Rosenblatt,  L.B. Grant, P.J. Hasslg, and K.N. Kreyenhagen, C a l l f o r n i a  
Research and Technology, Chatsworth, Cal If. 

Numerous Impact c r a t e r i n g  events have occurred on t h e  Ear th  dur ing  t h e  l a s t  several  b l  I l l o n  
years t h a t  have se r ious l y  a f fec ted  our p lanet  and I t s  atmosphere ill. The la rges t  c r a t e r i n g  
events, which were caused by as tero ids  and comets w i t h  k i n e t l c  energies equ iva len t  t o  tens  of 
m i  I l i ons  of megatons o f  TNT, have d i s t r i b u t e d  subs tan t ia l  q u a n t i t i e s  o f  t e r r e s t r i a l  and 
e x t r a t e r r e s t r i a l  m t e r l a l  over much or a l l  o f  t h e  Earth l2,31. E jec t i on  of such m s s i v e  
q u a n t l t i e s  of vaporized and so l  i d  mater ia l  can produce severe physical  and chemical contaminat ion 
of t h e  atmosphere, which I n  t u r n  m y  induce changes I n  t h e  wor ld 's c l ima te  and biosphere 14,51. 
I n  add i t ion ,  la rge  impacts may s t imu la te  secondary volcanism t o  t h e  ex ten t  t h a t  it releases a s  
much or more volcanic ash and 9 s  than t h e  c d i n e d  msses  o f  impactor and c r a t e r  ejecta.  Large 
impacts i n  the  oceans can a l s o  produce t i d a l  waves r i s i n g  k i lometers  i n  he igh t  t h a t  a n  severely 
e f f e c t  coastal  and near-coastal regions. Separately or co l  l e c t l v e i y ,  these Impact e f f e c t s  can 
have globa I consequences. 

s imu la t ions  t h a t  model t h e  passage of a 10-km-diameter a s t e r o i d  through t h e  Ear th 's  atmosphere 
and t h e  sllbsequent c r a t e r i n g  and e jec ta  dynamics associated w i t h  impact o f  t h e  a s t e r o i d  i n t o  two 
d i f f e r e n t  targets,  I.B., an oceanic s i t e  and a cont inenta l  s i t e  161. The c a l c u l a t i o n s  were 
designed t o  ( 1 )  b road ly  represent g i a n t  impact events t h a t  have occurred on t h e  Ear th  s ince  i t s  
f o rnb t i on  and (2) s p e c i f l c a l l y  represent an impact c r a t e r i n g  event proposed to have occurred a t  
t h e  end o f  Cretaceous time. 

20 km/s w i th  a k i n e t i c  energy o f  2.6 x lo3' ergs (6.2 x lo7  MI. 
t h e  as tero id ,  ocean water, c r u s t a l  rock un i ts ,  sedimentary rock un i t ,  and mant le included e f f e c t s  
of s t rength  and f rac tu r ing ,  gener ic a s t e r o i d  and rock proper t ies ,  poros i ty ,  sa tu ra t i on ,  
I l t h o s t a t l c  stresses, and geothenna I cont r ibu t ions ;  a i  I model ing  was designed t o  s imu la te  impact 
and geologic cond i t ions  as r e a l i s t i c a l l y  as  possible. 
modeled t o  represent a combination o f  shale, sandstone, and limestone w i t h  17% p o r o s i t y  and water 
sa tura t ion ;  d e t a i l s  f o r  the  o ther  u n i t s  a r e  given i n  I61. 

Ca lcu la t i on  o f  t h e  passage o f  t h e  as te ro id  through a U.S. Standard Atmosphere showed 
development o f  a s t rong bcu shock t h a t  expanded r a d i a l l y  outward. Behind t h e  shock f r o n t  was a 
reg ion  o f  h igh l y  shock compressed and intensely heated a i r .  Behind t h e  as tero id ,  r a p i d  expansion 
of t h i s  shocked a i r  created a large region o f  very low dens i ty  ((0.001 ba r )  t h a t  a l s o  expanded 
away from t h e  impact area. Peak a i r  temperatures were ca lcu la ted  t o  be -20,000 K above t h e  rim 
a t  a range o f  15 km a t  2 s a f t e r  impact. By -4.5 s the  r i m  had u p l i f t e d  t o  -10 km a t  15 km range 
and t h e  a i r  temperature above t h e  r i m  was ca lcu la ted  t o  be -10,000 K. A t  30 s a i r  temperatures 
were s t i l l  over -2,000 K a t  ground lev91 a t  ranges o f  -100 km. Ca lcu la t ions  t o  30 s showed t h a t  
t h e  shock f r o n t  i n  t h e  a i r  and most of t he  expanding shocked a i r  mass preceded format ion of t h e  
c ra te r ,  I t s  e jec ta ,  and r i m  up1 i f ?  and had moved r a d i a l l y  outward and d i d  n o t  I n t e r a c t  w i t h  these 
ground features. 

c a r r i e d  t o  120 s. Despite geologic d i f fe rences ,  impacts I n  bo th  ta rge ts  developed comparable 
dynamic flow f i e l d s ,  and by -29 s s imi la r -s ized  t r s n s l s n t  c r a t e r s  -39 km deep and -62 km across 
had formed. I n  the  oceanic impact, t rans ien t - r im  u p l i f t  o f  ocean and under ly ing  c r u s t  reached a 
maximum a l t i t u d e  o f  near ly  40 km a t  -30 s; t h i s  up1 i f t e d  m s s  then col lapsed w i t h  r a d i a l  
v e l o c i t i e s  o f  4 0 0  m/s t o  produce enormous tsunamis. A f t e r  -30 s, s t rong g r a v i t a t i o n a l  rebound 
drove c r a t e r s  I n  bo th  oceanic and con t inen ta l  t a r g e t s  toward broad f l a t - f l o o r e d  shapes. A t  

120 s, t r a n s i e n t  c r a t e r  diameters were 4 0  km (con t inen ta l )  and -105 km (oceanic) and t r a n s l e n t  
depths had r i s e n  t o  on ly  -27 km; c r a t e r  f l o o r s  cons is t i ng  o f  melted and fragmented h o t  rock 
continued t o  rebound r a p i d l y  upward. By 60 s, -2 X 1014 t was e jec ted  from t h e  con t inen ta l  

I n  o rder  t o  study a large-scale Impact event I n  d e t a i l ,  we have completed computer 

i n  our ca lcu la t ions ,  t h e  a s t e r o i d  was modeled as a spher ica l  body moving v e r t i c a l l y  a t  
Deta i led  mater ia l  modeling o f  

For axample, t he  sedimentary u n i t  was 

Ca lcu la t ions  o f  t he  c r a t e r i n g  events I n  bo th  t h e  cont inenta l  and oceanic t a r g e t s  were 
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crater, about twlce t h e  mss eJected f ran the oceanic crater; t h e  d i f ference I s  due t o  the  
greater denslly of  rock versus water. By 120 I, -70,000 km3 (cont inental)  and -90,000 km3 
(oceanlc) o f  target  m t e r l a l  were excavated (no nmntlel, and m s s l v e  eJecta blankets were forming 
around the craters. 
three c ra te r  dlameters of  t he  Impact, b u t  t he  remslnlng ejecta t), lncludlng t h e  vaporlzed 
asteroid, would be l o f ted  t o  a l t l t u d e s  a t  least  as hlgh as -100 km. 

For a l l  p rac t i ca l  purposes, t h e  atmosphere was nearly completely removed from t h e  Impact 
area f o r  tens o f  seconds, lee., a l r  pressures were less than t rac t i ons  of a bar  out  t o  ranges o f  

We estlmate tha t  more than 70$ of the  eJecta would f l n a l l y  l l e  wl th ln  about 

over 50 km. Consequently, much o f  t h e  astero ld  and ta rge t  m t e r l a l s  were eJected upward I n t  
near vacuum. For comparlson wl th  t h e  amount o f  ejecta, t he  o r l g l n a l  column of dlsplaced a l r  
welghed -loll t. 
4 x lo1' t t o  a l t i t u d e s  o f  4 0  km and hlgher (o r l g lna l  ionosphere leve l ) ,  -1 X 1013 t t o  an 
a l t l t u d e  o f  -30-80 km (orglnal  mesosphere level), and -1.5 X 1013 t t o  an a l t i t u d e  of  -13-30 
(o r l g lna l  stratosphere level). Most of  t h l s  very hot  eJecta vapor consisted o f  ocean water 
c d l n e d  w l th  a smaller amount of  crusta l  m t e r l a l  estlmated a t  <lo$ o f  t h e  to ta l .  The a l t l  

Veloc l t les o f  t h e  eJecta vapor from t h e  oceanlc Impact were s u f f l c l e n t  t o  

a 

I f t  

km 

ude 
d l s t r l b u t l o n  of  e jecta from the  cont inental  Impact was s l rn l lar  t o  t h a t  from t h e  oceanlc impact: 
-7 X lo1' t t o  Ionospherlc levels, 4.0 X lo1* t t o  mesopherlc levels, and -1.6 X lo1' t t o  
stratospher lc levels. We estlmated t h a t  over 90% o f  these eJecta came from t h e  sedlmentary 
unl t .  Q l c u l a t l o n s  Indicate t h a t  -1 X 10l2 t o f  vapor was ejecta from t h e  sedlmentary u n l t  o f  
the cont lnental  crater. All of the  astero ld  vaporized, bu t  I n  both Impact events I t s  nnss rWs 
less than -1% o f  the  t o t a l  m s s  of the  ta rge t  m t e r l a l s  eJected. By 60 s, -5 X 10l1 t of 
vaporized astero id  had been eJected above 13 km, the  o r l g l n a l  level  o f  t h e  tropopause, by t h e  
oceanlc Impact and 4 X lo1' t by the  cont inental  Impact 
eJected t o  a l l  a l t i t u d e s  by 60 s was equal t o  -6.8 X 10'' t for the  oceanlc Impact and 4 X 10 
t f o r  t h e  cont lnental  Impact, l.e., 4 2 $  and 70$, respectively. By 120 5 ,  v i r t u a l l y  a l l  of t h e  
asterold was expandlng upward from the c ra te r  as vapor. 

Ef fects  of  secondary volcanism and return of  t he  ocean over hot oceanlc c ra te r  f l o o r  could 
also be expected t o  add substantlal s o l l d  and vaporized material t o  the  atmosphere, but  we have 
not stud I ed these cond I t Ions. 

The t o t a l  mss o f  astero ld  vapor 
1 1  
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