44 research outputs found

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with γ\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (γ,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (γ,γ\gamma,\gamma') photoexcitation reactions with high flux [(1013101510^{13}-10^{15})γ\gamma/s], small diameter (100μ\sim (100 \, \mum)2)^2 and small band width (ΔE/E103104\Delta E/E \approx 10^{-3}-10^{-4}) γ\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,γ\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (γ,γ)(\gamma,\gamma') isomer production via specially selected γ\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    Targeted Killing of Virally Infected Cells by Radiolabeled Antibodies to Viral Proteins

    Get PDF
    BACKGROUND: The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. METHODS AND FINDINGS: Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 ((213)Bi) and rhenium 188 ((188)Re) selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs) in vitro. Treatment of severe combined immunodeficiency (SCID) mice harboring HIV-1-infected hPBMCs in their spleens with a (213)Bi- or (188)Re-labeled monoclonal antibody (mAb) to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the (188)Re-labeled antibody to gp41 compared with those treated with the (188)Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. CONCLUSIONS: The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV
    corecore