69 research outputs found
The AGASA/SUGAR Anisotropies and TeV Gamma Rays from the Galactic Center: A Possible Signature of Extremely High-energy Neutrons
Recent analysis of data sets from two extensive air shower cosmic ray
detectors shows tantalizing evidence of an anisotropic overabundance of cosmic
rays towards the Galactic Center (GC) that ``turns on'' around eV. We
demonstrate that the anisotropy could be due to neutrons created at the
Galactic Center through charge-exchange in proton-proton collisions, where the
incident, high energy protons obey an power law associated with
acceleration at a strong shock. We show that the normalization supplied by the
gamma-ray signal from EGRET GC source 3EG J1746-2851 -- ascribed to pp induced
neutral pion decay at GeV energies -- together with a very reasonable spectral
index of 2.2, predicts a neutron flux at eV fully consistent
with the extremely high energy cosmic ray data. Likewise, the normalization
supplied by the very recent GC data from the HESS air-Cerenkov telescope at
\~TeV energies is almost equally-well compatible with the eV
cosmic ray data. Interestingly, however, the EGRET and HESS data appear to be
themselves incompatible. We consider the implications of this discrepancy. We
discuss why the Galactic Center environment can allow diffusive shock
acceleration at strong shocks up to energies approaching the ankle in the
cosmic ray spectrum. Finally, we argue that the shock acceleration may be
occuring in the shell of Sagittarius A East, an unusual supernova remnant
located very close to the Galactic Center. If this connection between the
anisotropy and Sagittarius A East could be firmly established it would be the
first direct evidence for a particular Galactic source of cosmic rays up to
energies near the ankle.Comment: 57 pages, 2 figure
A search for VHE counterparts of Galactic Fermi bright sources and MeV to TeV spectral characterization
Very high-energy (VHE; E>100 GeV) gamma-rays have been detected from a wide
range of astronomical objects, such as pulsar wind nebulae (PWNe), supernova
remnants (SNRs), giant molecular clouds, gamma-ray binaries, the Galactic
Center, active galactic nuclei (AGN), radio galaxies, starburst galaxies, and
possibly star-forming regions as well. At lower energies, observations using
the Large Area Telescope (LAT) onboard Fermi provide a rich set of data which
can be used to study the behavior of cosmic accelerators in the MeV to TeV
energy bands. In particular, the improved angular resolution of current
telescopes in both bands compared to previous instruments significantly reduces
source confusion and facilitates the identification of associated counterparts
at lower energies. In this paper, a comprehensive search for VHE gamma-ray
sources which are spatially coincident with Galactic Fermi/LAT bright sources
is performed, and the available MeV to TeV spectra of coincident sources are
compared. It is found that bright LAT GeV sources are correlated with TeV
sources, in contrast to previous studies using EGRET data. Moreover, a single
spectral component seems unable to describe the MeV to TeV spectra of many
coincident GeV/TeV sources. It has been suggested that gamma-ray pulsars may be
accompanied by VHE gamma-ray emitting nebulae, a hypothesis that can be tested
with VHE observations of these pulsars.Comment: Astronomy and Astrophysics, in press, 17 pages, 12 figures, 5 table
Non-thermal X-rays from the Ophiuchus galaxy cluster and dark matter annihilation
We investigate a scenario where the recently discovered non-thermal hard
X-ray emission from the Ophiuchus cluster originates from inverse Compton
scattering of energetic electrons and positrons produced in weakly interacting
dark matter pair annihilations. We show that this scenario can account for both
the X-ray and the radio emission, provided the average magnetic field is of the
order of 0.1 microGauss. We demonstrate that GLAST will conclusively test the
dark matter annihilation hypothesis. Depending on the particle dark matter
model, GLAST might even detect the monochromatic line produced by dark matter
pair annihilation into two photons.Comment: 6 pages, 4 figures, matches published versio
Considerations for the design and conduct of human gut microbiota intervention studies relating to foods
With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiotaâhost interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods
Dark Matter in split extended supersymmetry
We consider the split extended (N=2) supersymmetry scenario recently proposed
by Antoniadis et al. [hep-ph/0507192] as a realistic low energy framework
arising from intersecting brane models. While all scalar superpartners and
charged gauginos are naturally at a heavy scale, the model low energy spectrum
contains a Higgsino-like chargino and a neutralino sector made out of two
Higgsino and two Bino states. We show that the lightest neutralino is a viable
dark matter candidate, finding regions in the parameter space where its thermal
relic abundance matches the latest determination of the density of matter in
the
Universe by WMAP. We also discuss dark matter detection strategies within
this model: we point out that current data on cosmic-ray antimatter already
place significant constraints on the model, while direct detection is the most
promising technique for the future. Analogies and differences with respect to
the standard split
SUSY scenario based on the MSSM are illustrated.Comment: 14 pages, references added, typos corrected, matches with the
published versio
EGRET Spectral Index and the Low-Energy Peak Position in the Spectral Energy Distribution of EGRET-Detected Blazars
In current theoretical models of the blazar subclass of active galaxies, the
broadband emission consists of two components: a low-frequency synchrotron
component with a peak in the IR to X-ray band, and a high-frequency inverse
Compton component with a peak in the gamma-ray band. In such models, the
gamma-ray spectral index should be correlated with the location of the
low-energy peak, with flatter gamma-ray spectra expected for blazars with
synchrotron peaks at higher photon energies and vice versa. Using the
EGRET-detected blazars as a sample, we examine this correlation and possible
uncertainties in its construction.Comment: 17 pages including 1 figure, accepted for publication in The
Astrophysical Journa
Diffuse Gamma-ray Emission from the Galactic Center - A Multiple Energy Injection Model
We suggest that the energy source of the observed diffuse gamma-ray emission
from the direction of the Galactic center is the Galactic black hole Sgr A*,
which becomes active when a star is captured at a rate of
yr^{-1}. Subsequently the star is tidally disrupted and its matter is accreted
into the black hole. During the active phase relativistic protons with a
characteristic energy erg per capture are ejected. Over
90% of these relativistic protons disappear due to proton-proton collisions on
a timescale years in the small central bulge region with
radius pc within Sgr A*, where the density is cm^{-3}. The
gamma-ray intensity, which results from the decay of neutral pions produced by
proton-proton collisions, decreases according to , where t is
the time after last stellar capture. Less than 5% of relativistic protons
escaped from the central bulge region can survive and maintain their energy for
>10^7 years due to much lower gas density outside, where the gas density can
drop to cm. They can diffuse to a pc region before
disappearing due to proton-proton collisions. The observed diffuse GeV
gamma-rays resulting from the decay of neutral pions produced via collision
between these escaped protons and the gas in this region is expected to be
insensitive to time in the multi-injection model with the characteristic
injection rate of 10^{-5} yr^{-1}. Our model calculated GeV and 511 keV
gamma-ray intensities are consistent with the observed results of EGRET and
INTEGRAL, however, our calculated inflight annihilation rate cannot produce
sufficient intensity to explain the COMPTEL data.Comment: 8 pages, 3 figures, accepted by A&
Annihilation Emission from the Galactic Black Hole
Both diffuse high energy gamma-rays and an extended electron-positron
annihilation line emission have been observed in the Galactic Center (GC)
region. Although X-ray observations indicate that the galactic black hole Sgr
A is inactive now, we suggest that Sgr A can become active when a
captured star is tidally disrupted and matter is accreted into the black hole.
As a consequence the galactic black hole could be a powerful source of
relativistic protons. We are able to explain the current observed diffuse
gamma-rays and the very detailed 511 keV annihilation line of secondary
positrons by collisions of such protons, with appropriate injection times
and energy. Relativistic protons could have been injected into the ambient
material if the black hole captured a 50M star at several tens million
years ago. An alternative possibility is that the black hole continues to
capture stars with 1M every hundred thousand years. Secondary
positrons produced by collisions at energies \ga 30 MeV are cooled down
to thermal energies by Coulomb collisions, and annihilate in the warm neutral
and ionized phases of the interstellar medium with temperatures about several
eV, because the annihilation cross-section reaches its maximum at these
temperatures. It takes about ten million years for the positrons to cool down
to thermal temperatures so they can diffuse into a very large extended region
around the Galactic center. A much more recent star capture may be also able to
account for recent TeV observations within 10 pc of the galactic center as well
as for the unidentified GeV gamma-ray sources found by EGRET at GC. The
spectral difference between the GeV flux and the TeV flux could be explained
naturally in this model as well.Comment: Accepted by ApJ on March 24, 200
Primary Versus Secondary Leptons in the EGRET SNR's
The EGRET supernova remnants (SNR's) are all expanding into nearby dense
molecular clouds, powering a shock at the interface where protons and electrons
accelerate to relativistic energies. A viable mechanism for the emission of
gamma$-rays in these sources is the decay of neutral pions created in
collisions between the relativistic hadrons and protons in the ambient medium.
But neutral pion decay alone cannot reproduce the whole high-energy spectrum,
particularly below 100 MeV. A pion-decay scenario thus requires a lepton
population to "fill in" the lower part of the spectrum via bremsstrahlung
emission. This population, however, is constrained by the SNR radio spectrum.
Taking our cue from the behavior of Sgr A East, an energetic EGRET SNR at the
Galactic center, we here examine the role played in these sources by secondary
leptons--electrons and positrons produced in proton-proton scattering events
and the ensuing particle cascades. We show that while secondary leptons cannot
account for the gamma-rays below 100 MeV, they can account for the hard radio
spectra observed from the EGRET SNR's. Thus, it appears that both primary and
secondary leptons may be important contributors to the overall broadband
emission from these sources, but if so, must radiate most of their energy in
different parts of the SNR-cloud environment. We show that shock acceleration
in dense cores being overtaken by the expanding SNR shell can naturally lead to
such a scenario.Comment: 32 pages, 16 figures. Submitted to Ap
Gamma-ray and radio tests of the e+e- excess from DM annihilations
PAMELA and ATIC recently reported an excess in e+e- cosmic rays. We show that
if it is due to Dark Matter annihilations, the associated gamma-ray flux and
the synchrotron emission produced by e+e- in the galactic magnetic field
violate HESS and radio observations of the galactic center and HESS
observations of dwarf Spheroidals, unless the DM density profile is
significantly less steep than the benchmark NFW and Einasto profiles.Comment: 16 pages, 4 figures; v2: normalizations fixed in Table 2 and typos
corrected (no changes in the analysis nor the results), some references and
comments added; v3: minor additions, matches published versio
- âŠ