8 research outputs found

    Draize Rabbit Eye Test Compatibility with Eye Irritation Thresholds in Humans: A Quantitative Structure-Activity Relationship Analysis

    No full text
    Draize rabbit eye test scores, as modified maximum average score (MMAS), for 68 pure bulk liquids were adjusted by the liquid-saturated vapor pressure P°. These 68 adjusted scores, as log (MMAS/P°), were shown to be completely equivalent to eye irritation thresholds (EIT), expressed as log (1/EIT), for 23 compounds in humans. Thus, for the first time the Draize eye test in rabbits for pure bulk liquids is shown to be perfectly compatible with eye irritation thresholds in humans. The total data set for 91 compounds was analyzed by the general solvation equation of Abraham. Values of log (MMAS/P°) or log (1/EIT) could be fitted to a five-parameter equation with R2 0.936, SD 0.433, AD 0.000, and AAD 0.340 over a range of 9.6 log units. When divided into a training set of 45 compounds, the corresponding equation could be used to predict the remaining 46 compounds in a test set with AD –0.037 and AAD 0.345 log units. Thus, the 91-compound equation can now be used to predict further EIT values to around 0.4 log units. It is suggested that the mechanism of action in the Draize test and in the human EIT involves passive transfer of the compound to a biophase that is quite polar, is a strong hydrogen bond base, a moderate hydrogen bond acid, and quite hydrophobic. The biophase does not resemble water or plasma, but resembles an organic solvent such as N-methylformamide

    Methionine oxidation enhances kappa-casein amyloid fibril formation

    No full text
    The effects of protein oxidation, for example of methionine residues, are linked to many diseases, including those of protein misfolding, such as Alzheimer's disease. Protein misfolding diseases are characterized by the accumulation of insoluble proteinaceous aggregates comprised mainly of amyloid fibrils. Amyloid-containing bodies known as corpora amylacea (CA) are also found in mammary secretory tissue, where their presence slows milk flow. The major milk protein κ-casein readily forms amyloid fibrils under physiological conditions. Milk exists in an extracellular oxidizing environment. Accordingly, the two methionine residues in κ-casein (Met(95) and Met(106)) were selectively oxidized and the effects on the fibril-forming propensity, cellular toxicity, chaperone ability, and structure of κ-casein were determined. Oxidation resulted in an increase in the rate of fibril formation and a greater level of cellular toxicity. β-Casein, which inhibits κ-casein fibril formation in vitro, was less effective at suppressing fibril formation of oxidized κ-casein. The ability of κ-casein to prevent the amorphous aggregation of target proteins was slightly enhanced upon methionine oxidation, which may arise from the protein's greater exposed surface hydrophobicity. No significant changes to κ-casein's intrinsically disordered structure occurred upon oxidation. The enhanced rate of fibril formation of oxidized κ-casein, coupled with the reduced chaperone ability of β-casein to prevent this aggregation, may affect casein-casein interaction within the casein micelle and thereby promote κ-casein aggregation and contribute to the formation of CA.Tomas Koudelka, Francis C. Dehle, Ian F. Musgrave, Peter Hoffmann, and John A. Carve

    Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods

    Get PDF
    A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.C. Holt, J. A. Carver, H. Ecroyd, and D. C. Thor

    Extracellular Chaperones

    No full text
    corecore