13 research outputs found

    Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats.

    No full text
    Dyslipidemia is a risk factor for cardiovascular disease, steatohepatitis, and progression of liver disorders. This study investigated the protective effect of farnesol (FAR), a sesquiterpene alcohol, against liver injury in high cholesterol diet (HCD)-fed rats, and its modulatory effect on fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). HCD was supplemented for 10 weeks, and the rats were concurrently treated with FAR. Rats that received HCD exhibited significant elevation of serum cholesterol, triacylglycerols, LDL and vLDL cholesterol, CRP, and pro-inflammatory cytokines and increased values of the cardiovascular risk indices. Serum transaminases, ALP, LDH and CK-MB, and hepatic lipid peroxidation (LPO), cholesterol, and triacylglycerols were increased in HCD-fed rats. Treatment with FAR greatly ameliorated dyslipidemia and liver function, reduced inflammatory mediators, LPO, and hepatic lipid infiltration and enhanced anti-oxidant defenses. FAR suppressed hepatic FAS, ACC, and SREPB-1c mRNA abundance and FAS activity in HDC-fed rats. In addition, molecular docking simulations pinpointed the binding modes of FAR to the active pocket residues of FAS and ACC. In conclusion, FAR possesses a strong anti-hyperlipidemic/anti-hypercholesterolemic activity mediated through its ability to modulate hepatic FAS, ACC, and SREPB-1c. FAR prevented oxidative stress, inflammation, and liver injury induced by HCD. Thus, FAR may represent a promising lipid-lowering agent that can protect against dyslipidemia and its linked metabolic deregulations

    Faldaprevir, pegylated interferon, and ribavirin for treatment-naïve HCV genotype-1: Pooled analysis of two phase 3 trials

    No full text
    Introduction & aim. Faldaprevir is a potent once-daily (q.d.) hepatitis C virus (HCV) NS3/4A protease inhibitor. The STARTVerso1 and STARTVerso2 phase 3 studies evaluated faldaprevir plus peginterferon alfa-2a/ribavirin (PegIFN/RBV) in treatment-naïve patients with chronic HCV genotype-1 infection. Material and methods. Patients were randomized 1:2:2 to receive placebo, faldaprevir 120 mg q.d. (12 or 24 weeks) or faldaprevir 240 mg q.d. (12 weeks) all with PegIFN/RBV (24–48 weeks). Faldaprevir 120 mg for 12 weeks only (STARTVerso1 only) required early treatment success (ETS, HCV RNA < 25 IU/mL at week 4 and undetected at week 8). All faldaprevir-treated patients with ETS stopped PegIFN/RBV at week 24. Primary endpoint: sustained virologic response 12 weeks post-treatment (SVR12). Results. SVR12 rates were significantly higher for patients treated with faldaprevir 120 or 240 mg (72% and 73%, respectively) compared with placebo (50%); estimated differences (adjusted for trial, race, and genotype-1 subtype) faldaprevir 120 mg 24% (95% CI: 17–31%, P < 0.0001), faldaprevir 240 mg 23% (95% CI: 16–30%, P < 0.0001). Subgroup analyses consistently showed higher SVR12 rates for patients receiving faldaprevir compared with placebo. The incidence of adverse events (AEs) was similar in faldaprevir 120-mg and placebo groups and slightly higher in the faldaprevir 240-mg group. Serious AEs were reported in 6%, 7%, and 8% of patients in placebo, faldaprevir 120-mg, and faldaprevir 240-mg groups, respectively. Conclusion. Addition of faldaprevir to PegIFN/RBV increased SVR12 in patients with HCV genotype-1, and was well tolerated. Faldaprevir 120 mg is effective in the treatment of HCV genotype-1. ClinicalTrials.gov: NCT01343888 and NCT01297270.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Telaprevir for previously untreated chronic hepatitis C virus infection.

    No full text
    BACKGROUND: In phase 2 trials, telaprevir, a hepatitis C virus (HCV) genotype 1 protease inhibitor, in combination with peginterferon-ribavirin, as compared with peginterferon-ribavirin alone, has shown improved efficacy, with potential for shortening the duration of treatment in a majority of patients. METHODS: In this international, phase 3, randomized, double-blind, placebo-controlled trial, we assigned 1088 patients with HCV genotype 1 infection who had not received previous treatment for the infection to one of three groups: a group receiving telaprevir combined with peginterferon alfa-2a and ribavirin for 12 weeks (T12PR group), followed by peginterferon-ribavirin alone for 12 weeks if HCV RNA was undetectable at weeks 4 and 12 or for 36 weeks if HCV RNA was detectable at either time point; a group receiving telaprevir with peginterferon-ribavirin for 8 weeks and placebo with peginterferon-ribavirin for 4 weeks (T8PR group), followed by 12 or 36 weeks of peginterferon-ribavirin on the basis of the same HCV RNA criteria; or a group receiving placebo with peginterferon-ribavirin for 12 weeks, followed by 36 weeks of peginterferon-ribavirin (PR group). The primary end point was the proportion of patients who had undetectable plasma HCV RNA 24 weeks after the last planned dose of study treatment (sustained virologic response). RESULTS: Significantly more patients in the T12PR or T8PR group than in the PR group had a sustained virologic response (75% and 69%, respectively, vs. 44%; P<0.001 for the comparison of the T12PR or T8PR group with the PR group). A total of 58% of the patients treated with telaprevir were eligible to receive 24 weeks of total treatment. Anemia, gastrointestinal side effects, and skin rashes occurred at a higher incidence among patients receiving telaprevir than among those receiving peginterferon-ribavirin alone. The overall rate of discontinuation of the treatment regimen owing to adverse events was 10% in the T12PR and T8PR groups and 7% in the PR group. CONCLUSIONS: Telaprevir with peginterferon-ribavirin, as compared with peginterferon-ribavirin alone, was associated with significantly improved rates of sustained virologic response in patients with HCV genotype 1 infection who had not received previous treatment, with only 24 weeks of therapy administered in the majority of patient
    corecore