10 research outputs found

    Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs

    Get PDF
    Background Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. Methods PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. Results Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. Conclusion Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications.publishedVersio

    Contact osteogenesis by biodegradable 3D-printed poly(lactide-co-trimethylene carbonate)

    Get PDF
    Background To support bone regeneration, 3D-printed templates function as temporary guides. The preferred materials are synthetic polymers, due to their ease of processing and biological inertness. Poly(lactide-co-trimethylene carbonate) (PLATMC) has good biological compatibility and currently used in soft tissue regeneration. The aim of this study was to evaluate the osteoconductivity of 3D-printed PLATMC templates for bone tissue engineering, in comparison with the widely used 3D-printed polycaprolactone (PCL) templates. Methods The printability and physical properties of 3D-printed templates were assessed, including wettability, tensile properties and the degradation profile. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were used to evaluate osteoconductivity and extracellular matrix secretion in vitro. In addition, 3D-printed templates were implanted in subcutaneous and calvarial bone defect models in rabbits. Results Compared to PCL, PLATMC exhibited greater wettability, strength, degradation, and promoted osteogenic differentiation of hBMSCs, with superior osteoconductivity. However, the higher ALP activity disclosed by PCL group at 7 and 21 days did not dictate better osteoconductivity. This was confirmed in vivo in the calvarial defect model, where PCL disclosed distant osteogenesis, while PLATMC disclosed greater areas of new bone and obvious contact osteogenesis on surface. Conclusions This study shows for the first time the contact osteogenesis formed on a degradable synthetic co-polymer. 3D-printed PLATMC templates disclosed unique contact osteogenesis and significant higher amount of new bone regeneration, thus could be used to advantage in bone tissue engineering.publishedVersio

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs

    No full text
    Background Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration. Methods PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo computed tomography (CT), ex vivo micro-CT and histology. Results Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encapsulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis. Conclusion Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for bone tissue engineering applications

    Fast and Excellent Enhanced Photocatalytic Degradation of Methylene Blue Using Silver-Doped Zinc Oxide Submicron Structures under Blue Laser Irradiation

    No full text
    In this study, laser-assisted chemical bath synthesis (LACBS) was used to prepare pure and Ag-doped ZnO submicron structures using a simplified hydrothermal approach that did not require a catalyst. The photocatalytic degradation of Methylene Blue was investigated under blue laser irradiation (λ = 444.5 nm and I = 8000 lx). The doping concentration varied (2%, 4%, 6%, 8%, tando 10%) and was prepared by LACBS using a continuous blue laser (P = 7 W, λ = 444.5 nm) for the first time. XRD, FE-SEM, EDX, and UV-Vis investigated the characteristics of the samples produced by the LACBS. ZnO: Ag(10%) submicron flowers are essential in rapid photodegradation under blue laser irradiation. The high surface area and catalytic activity of the prepared Ag-decorated ZnO are attributed to this improved photocatalytic activity. Using UV-visible spectroscopy, the photocatalytic efficiency was determined from the absorption spectra. The separation of photo-generated electron-hole pairs was facilitated, and the absorption edge of the hybrid submicron structures shifted into the visible spectrum region due to a combination of the Ag plasmonic effect and surface imperfections in ZnO. Effective visible light absorption was achieved via band-edge tuning, which increased the ZnO:Ag submicron structures’ ability to degrade dyes

    Antiproliferative potential of Dypsis decaryi seeds supported by metabolic profiling and molecular docking

    No full text
    IntroductionDypsis decaryi seeds need more phytochemical and biological attention specially on one of the most important life-threatening problems (cancer).MethodsTotal ethanol extract of D. decaryi seeds (TEEDDS, Arecaceae) and its fixed oil fraction (FOF) were subjected to UPLC-HR-ESI-MS metabolic profiling and gas chromatography-mass spectrometry, respectively. Also, TEEDDS, FOF, and FOF silver nanoparticles (FOF-SNPs) were screened using 4 cell lines. FOF effects on expression of Bcl-2, Bax, P53, and epidermal growth factor receptor (EGFR) in human prostate carcinoma cell line (PC-3) were evaluated and supported by docking study.ResultsMetabolic profiling of TEEDDS resulted in identification of 18 compounds. While GC-MS of FOF displayed the presence of 12 fatty acids methyl esters. TEEDDS, staurosporine, FOF, and FOF-SNPs showed IC50= 3.55, 9.81, 16.88, and 0.01 µg/mL, respectively, against PC-3 (human prostate carcinoma cell line). FOF effects on the expression of Bcl-2, Bax, P53, and EGFR in PC-3 cell lines displayed IC50= 1.09, 220.6, 619.8, and 399.64 ng/mL, respectively. The FOF major constituent (E-13-octadecenoic acid) exhibited significant affinity and binding interactions that were comparable with that of the cocrystalized inhibitor.Discussion/ConclusionsFor the first time, in vitro antiproliferative activity against PC-3, HepG-2, HCT-116, and MCF-7 cells, and chemical profiles of TEEDDS and its FOF have been noteworthy studied. FOF and FOF-SNPs displayed the highest activities particularly on PC-3. Additionally, FOF showed significant activities on Bcl-2, Bax, P53, and EGFR, which was also supported by docking study. These results highlight that FOF and FOF-SNPs could have potent antiproliferative activity against PC-3 cell lines and may play an important role in antiproliferative drug development

    Enhancing antimicrobial and photocatalyst properties of Mg-doped ZnO nanotubes via novel laser-assisted chemical bath synthesis

    No full text
    Laser-Assisted Chemical Bath Synthesis (LACBS) was used to fabricate pure and magnesium-doped zinc oxide nanoparticles. Analysis of these nanoparticles' structural, morphological, optical, and antimicrobial characteristics was conducted. This analysis spanned across varying concentrations of magnesium-doped zinc oxide from 1 % to 3 %. XRD confirmed the nanoparticles' crystalline nature, revealing the hexagonal wurtzite phase. SEM analysis showcased their nanometric domain existence and hexagonal crystalline morphology, transforming from nanorods to nanotubes. Optical analysis showed band gap energy decrease from 3.27 to 2.85 eV correlating with the magnesium doping concentration increase. Optical absorption displayed a distinctive redshift for the nanoparticles as magnesium concentration increased from 1 % to 3 %. Photocatalytic assessments highlighted the superior degradation ability of 3 % Mg-doped nanoparticles, showing a 98.04 % degradation rate against methylene orange dye under blue light exposure. Antimicrobial activity tests against various pathogens showed that Mg ions' incorporation significantly enhanced antimicrobial performance, demonstrating the effectiveness of the LACBS method

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore