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Abstract 

Background:  Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation of bone marrow 
mesenchymal stromal cells (BMSC). 3D printing offers the possibility to produce customized scaffolds for complex 
bone defects. The aim of this study was to compare the potential of human BMSC cultured as 2D monolayers or 3D 
spheroids encapsulated in constructs of 3D-printed poly-L-lactide-co-trimethylene carbonate scaffolds and modified 
human platelet lysate hydrogels (PLATMC-HPLG) for bone regeneration.

Methods:  PLATMC-HPLG constructs with 2D or 3D BMSC were assessed for osteogenic differentiation based on gene 
expression and in vitro mineralization. Subsequently, PLATMC-HPLG constructs with 2D or 3D BMSC were implanted 
in rat calvarial defects for 12 weeks; cell-free constructs served as controls. Bone regeneration was assessed via in vivo 
computed tomography (CT), ex vivo micro-CT and histology.

Results:  Osteogenic gene expression was significantly enhanced in 3D versus 2D BMSC prior to, but not after, encap‑
sulation in PLATMC-HPLG constructs. A trend for greater in vitro mineralization was observed in constructs with 3D 
versus 2D BMSC (p > 0.05). In vivo CT revealed comparable bone formation after 4, 8 and 12 weeks in all groups. After 
12 weeks, micro-CT revealed substantial regeneration in 2D BMSC (62.47 ± 19.46%), 3D BMSC (51.01 ± 24.43%) and 
cell-free PLATMC-HPLG constructs (43.20 ± 30.09%) (p > 0.05). A similar trend was observed in the histological analysis.

Conclusion:  Despite a trend for superior in vitro mineralization, constructs with 3D and 2D BMSC performed similarly 
in vivo. Regardless of monolayer or spheroid cell culture, PLATMC-HPLG constructs represent promising scaffolds for 
bone tissue engineering applications.
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Background
Reconstruction of advanced maxillofacial bone deficien-
cies is a clinical challenge. Bone tissue engineering (BTE) 
strategies are increasingly being used to overcome the 

limitations of autogenous bone grafts and existing bone-
substitute materials to reconstruct such defects [1]. BTE 
aims to combine the cellular (osteogenic cells), extracellu-
lar (osteoconductive scaffolds) and/or molecular elements 
(osteoinductive growth factors) required for bone healing 
[2]. The potential of BTE for orofacial bone regeneration 
as demonstrated in several preclinical and clinical studies 
has recently been summarized [1, 3–5].
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BTE strategies usually involve the use of adult mes-
enchymal stromal cells (MSC), most frequently derived 
from the bone marrow (BMSC) and expanded as plastic-
adherent monolayers [6, 7]. This expansion process can 
be further enhanced by replacing animal-derived sup-
plements, e.g., fetal bovine serum (FBS), in MSC cul-
tures with humanized or “xeno-free” alternatives such as 
human platelet lysate (HPL) [8–10]. This step is impor-
tant not only to enhance the efficacy of MSC expansion 
but also to facilitate clinical translation of cell therapies 
according to current regulations [11]. Despite these 
advances, the two-dimensional (2D) monolayer expan-
sion system is not representative of the in  vivo MSC 
microenvironment and may alter the phenotype and 
properties of MSC [12, 13]. In contrast, self-assembly 
or aggregation of MSC into three-dimensional (3D) 
spheroids simulates more closely their in  vivo microen-
vironment or niche [12, 14]. In the context of bone regen-
eration, the cytoskeletal changes induced by 3D culture 
may be particularly beneficial [15, 16]. We have recently 
reported that 3D spheroid culture of BMSC promotes the 
expression of several genes and proteins associated with 
self-renewal and osteogenic differentiation; the latter is 
independent of osteogenic stimulation [17]. Moreover, 
several studies have demonstrated benefits of spheroid 
culture for promoting the differentiation [18–20], par-
acrine function [21] and regeneration potential of MSC 
[22–25].

Traditional cell delivery methods involve direct seeding 
and attachment of MSC on biomaterial scaffolds before 
in  vivo transplantation [26]. However, this method may 
not be optimal for the delivery of cell spheroids where the 
3D structure, essential to maximize their in vivo effects, 
is lost by direct seeding. To preserve the 3D structure, 
encapsulation of spheroids in hydrogels represents an 
effective delivery system for BTE applications [27–29]. 
Recent reports also suggest that hydrogel properties may 
modulate the efficacy of MSC spheroids [30]. Since HPL 
is increasingly being used, and even recommended, for 
clinical-grade MSC culture [31], extending its application 
as a hydrogel carrier represents a clinically relevant and 
cost-effective strategy for BTE. In addition to function-
ing as cell carriers, HPL hydrogels (HPLG) may offer an 
additional benefit of sustained cytokine release at regen-
eration sites [32].

While hydrogel scaffolds may be used in self-contained 
bone defects, larger, non-contained defects often necessi-
tate the use of rigid biomaterials. These “bone substitute” 
biomaterials represent the cornerstone of bone regenera-
tive therapies, and various materials have been investi-
gated to date [33]. Among these are synthetic polymers, 
e.g., poly(L-lactic acid) (PLA), poly(glycolic acid) (PGA), 
and their copolymers, e.g., polylactic-co-glycolic acid 

(PLGA). A major advantage of synthetic (co)polymers 
is the possibility to adjust their structure, biomechani-
cal properties and biodegradability to suit the required 
application(s), in addition to a reduced risk of undesir-
able immunological reactions (34, 35). Moreover, cur-
rent advances in 3D printing allow the fabrication of 
customized (co)polymer scaffolds with highly controlled 
macro- and micro-architecture for bone regeneration 
[36]. Although PLA, PGA and PLGA represent some of 
the most frequently used materials for 3D-printed bone 
scaffolds, a major disadvantage is the local pH alterations 
caused by the acidic by-products from their hydrolytic 
degradation, which may be unfavorable for cell growth 
and differentiation [35]. Trimethylene carbonate (TMC) 
is a polymer which degrades via surface erosion; when 
combined with PLA (PLATMC), it stabilizes the PLA 
resulting in less hydrolysis and thereby less by-products 
and local pH alterations [35]. The suitability of PLATMC 
for producing 3D-printed scaffolds, which support MSC 
attachment, growth and differentiation, has recently been 
demonstrated [37].

A combination of MSC with growth factor-rich hydro-
gels (HPLG) and biomaterial scaffolds (PLATMC), 
reflecting the classical tissue engineering “triad,” may 
represent a novel and effective strategy for bone regener-
ation in challenging defects [38, 39]. Therefore, the objec-
tives of the present study were to develop constructs of 
BMSC encapsulated in HPLG and PLATMC constructs 
as dissociated (2D) cells or 3D spheroids and to compare 
their in vivo bone regeneration potential in an orthotopic 
defect model.

Methods
Cell culture
The use of human cells and tissues was approved by the 
Regional Committees for Medical Research Ethics (REK) 
in Norway (2013-1248/REK sør-øst C). Bone marrow 
aspirates were obtained from three donors (1 female and 
2 males; 8–10  years) undergoing corrective surgery at 
the Department of Plastic Surgery, Haukeland Univer-
sity Hospital, Bergen, Norway. BMSC were isolated and 
expanded in growth media (GM) comprising of Dul-
becco’s modified Eagle’s medium (DMEM, Invitrogen, 
Carlsbad, CA, USA) supplemented with 5% (v/v) pooled 
HPL (Bergenlys, Bergen, Norway), 1% (v/v) penicillin/
streptomycin (GE Healthcare, South Logan, UT, USA) 
and 1 IU/mL heparin (Leo Pharma AS, Lysaker, Norway). 
The preparation of HPL is described elsewhere [10]. 
Cells were sub-cultured (4000 cells/cm2) and expanded 
in humidified 5% CO2 at 37  °C; passage 2–4 cells were 
used in experiments. Monolayer (2D) BMSC were char-
acterized based on immunophenotype, proliferation 
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and multi-lineage differentiation potential as previously 
described [10].

To generate 3D spheroids, monolayer BMSC (passage 
2) were seeded in microwell-patterned 24-well plates 
(Kugelmeiers Ltd, Erlenbach, Switzerland) in GM; after 
24  h, aggregates of ~ 1000 cells were formed via guided 
self-assembly [17]. To induce differentiation of 2D and 
3D BMSC, osteogenic induction media (OIM) were pre-
pared by supplementing GM with final concentrations of 
0.05 mM L-ascorbic acid 2-phosphate, 10 nM dexameth-
asone and 10  mM β glycerophosphate (all from Sigma-
Aldrich, St. Louis, MO, USA).

Characterization of 2D and 3D BMSC
Monolayer (2D) and spheroid (3D) BMSC were charac-
terized at gene and protein levels. Expressions of genes 
associated with multipotency and osteogenesis (Addi-
tional file 1: Table 1), normalized to that of glyceraldehyde 
3-phosphate dehydrogenase (GAPDH), were assessed 
after 7  days via quantitative real-time polymerase chain 
reaction (qPCR) using TaqMan PCR assays (Thermo Sci-
entific, Carlsbad, CA, USA). Osteogenic gene expression 
was assessed in both GM and OIM cultures. RNA extrac-
tion and cDNA synthesis were performed as previously 
described [40]. Mineralization in 2D and 3D BMSC was 
confirmed via Alizarin red S staining (Sigma-Aldrich) 
after 21 days of OIM culture.

For protein-level characterization, conditioned media 
(CM) from 2D (2D-CM) and 3D BMSC (3D-CM) were 
collected after culturing the cells for 48  h in HPL-free 
media and characterized via a multiplex cytokine assay as 
previously described [17]. Briefly, the concentrations of 
15 cytokines (Additional file  1: Table  2) were measured 
using a custom multiplex assay and Bio-Plex R 200 Sys-
tem (both from Bio-Rad Laboratories, CA, USA), accord-
ing to the manufacturer’s instructions. To account for 
differences in cell proliferation rates between 2 and 3D 
cultures, cytokine concentrations (pg/mL) were normal-
ized to the corresponding total cellular DNA (ng/mL). 
DNA quantification was performed using the Quant-
IT PicoGreen dsDNA Assay (Invitrogen) according to 
the manufacturer’s instructions. The efficacy of 2D- and 
3D-CM was tested in an in vitro wound healing assay of 
rat BMSC (Additional file 1).

3D printing of PLATMC scaffolds
3D-printed PLATMC scaffolds were produced as 
described elsewhere [37]. Briefly, a 3D CAD model 
was designed using the Magics software integrated 
with a 3D-Bioplotter (both from EnvisionTEC, Glad-
beck, Germany). Granules of medical-grade PLATMC 
(RESOMER® LT-706-S 70:30, Evonik GmBh, Essen, Ger-
many) were loaded into the printer cartridge (pre-heated 

to 220  °C), and rectangular sheets of three layers with 
an orientation of 0°–90°–0° were printed at 190  °C with 
an inner nozzle diameter of 400  μm and strand spac-
ing of 0.7  mm [37]. Disc-shaped scaffolds measuring 
5 mm × 1.2 mm were punched out and placed in 48-well 
plates. Prior to use in experiments, the scaffolds were 
sterilized by soaking in 70% ethanol for 30 min, followed 
by washing with phosphate-buffered saline (PBS; Invitro-
gen) and 2-h exposure to UV light in sterile conditions.

Production of hydrogels and constructs
HPLG were produced by combining previously reported 
methods for platelet-rich plasma (PRP) and fibrin gel 
preparation, both of which are commonly used as scaf-
folds in BTE applications. To prepare the hydrogels, 
sterile-filtered HPL (same as for cell culture) was sup-
plemented with 20  mg/mL fibrinogen (Sigma-Aldrich) 
to increase the stiffness and mechanical properties of 
the hydrogel. Gelation was achieved by adding a “throm-
bin solution” containing 1  IU/mL human thrombin and 
1 TIU/mL aprotinin in 20 mM CaCl2 solution (all from 
Sigma-Aldrich), followed by incubation at 37  °C for 
15 min.

To prepare the PLATMC-HPLG constructs, HPL/
fibrinogen and thrombin solutions were mixed and 
50  μL were quickly seeded on the PLATMC scaffolds 
(pre-wetted with HPL), followed by incubation at 37  °C 
for 15  min. Imaging of constructs was performed using 
a stereomicroscope (Leica M205C, Heerbrugg, Switzer-
land) and, after gold/palladium sputter-coating, using 
a scanning electron microscope (SEM; Phenom XL, 
Thermo Scientific).

Cell encapsulation in constructs
For cell encapsulation, equal numbers of dissociated (2D) 
or spheroid (3D) BMSC were uniformly suspended in 
fibrin-supplemented HPL, mixed with thrombin solu-
tion and seeded on scaffolds (1 × 106 cells in 50  μL) as 
described above. The distribution of 2D and 3D BMSC 
within PLATMC-HPLG constructs was observed under 
a light microscope (Nikon Eclipse TS100, Tokyo, Japan). 
Cell morphology and viability were assessed after 1, 7 
and 21  days using the LIVE/DEAD cell viability assay 
(Invitrogen) and observed under a high-speed Andor 
Dragonfly 5050 confocal microscope equipped with an 
iXon 888 Life EMCCD camera (1024 × 1024 resolution, 
100–200 × magnification; Oxford Instruments, Abing-
don, UK). Z-stacks were acquired from the top of each 
construct, with steps of 4 μm to a depth of up to 200 μm. 
Images were processed using the Imaris software (Oxford 
Instruments).

To assess osteogenic differentiation, PLATMC-HPLG 
constructs with 2D or 3D BMSC were cultured in GM 
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and OIM for up to 21  days. Expressions of early, inter-
mediate and late osteogenesis-related genes (Additional 
file  1: Table  1) were assessed after 7  days via qPCR. 
In  vitro mineralization was assessed via Alizarin red S 
staining (Sigma-Aldrich) after 14 and 21  days, as previ-
ously described [40]. For quantification, the stain was dis-
solved in 10% cetylpyridinium chloride (Sigma-Aldrich) 
and absorbance was measured at 540 nm using a micro-
plate reader.

Implantation in rat calvarial defects
Animal experiments were approved by the Norwegian 
Animal Research Authority (Mattilsynet; FOTS-17443) 
and performed in accordance with the ARRIVE guide-
lines [41]. Twelve male athymic nude rats (Rj:ATHYM-
Foxn1rnu, Janvier Labs, Le Genest-Saint-Isle, France), 7 
weeks old and weighing 300 ± 15.58 g were used. Animals 
were housed in stable conditions (22 ± 2 °C) with a 12-h 
dark/light cycle and ad libitum access to food and water. 
Animals were allowed to acclimatize for one week prior 
to experiments and were regularly monitored for signs of 
pain/infection, food intake and activity during the entire 
experimental period. Pre-operatively, animals were anes-
thetized with a mixture of sevoflurane (Abbott Laborato-
ries, Berkshire, UK) and O2 using a custom-made mask. 
Following anesthesia, a 2-cm sagittal incision was made 
in the midline of the cranium to reflect the periosteum 
and expose the parietal bones. In each animal, two full-
thickness defects of 5  mm diameter [42] were created 
on either side using a trephine bur (Meisinger GmbH, 
Neuss, Germany) attached to a slow-speed handpiece 
under saline irrigation. Special care was taken to preserve 
the sagittal suture and underlying dura mater. The fol-
lowing constructs were then randomly implanted in the 
defects: PLATMC-HPLG containing 2 × 106 2D BMSC 
(n = 8), PLATMC-HPLG containing 2 × 106 3D BMSC 
(n = 8) or cell-free PLATMC-HPLG constructs (n = 6); 
PLATMC scaffolds without HPLG were implanted in two 
defects (n = 2). The critical-size nature of 5  mm defects 
was previously tested showing no healing within the 
observation time (data not shown). All constructs were 
cultured in GM for 36  h prior to implantation. Rand-
omization was performed so that no animal received 
two constructs from the same group and animals were 
coded via ear clips. Post-operatively, the skin was sutured 
(Vicryl, Ethicon, Somerville, NJ, USA) and animals were 
injected subcutaneously with buprenorphine (Temgesic 
0.03 mg/kg, Schering-Plough, UK) for up to 2 days there-
after. After 12 weeks, the animals were euthanized with 
an overdose of CO2. The primary outcome was assess-
ment of bone regeneration in the defects via radiography 
and histology. For all subsequent handling/analyses, the 

animals were identified by numbers to facilitate blinding 
of observers to the treatment groups.

In vivo computed tomography (CT)
To track in  vivo bone regeneration, the calvaria were 
scanned 4, 6, 8 and 12 weeks after surgery using a small-
animal CT scanner (nanoScan, Mediso, Budapest, Hun-
gary) as previously described [43]. At each time point, 
0.04  mm resolution scans were obtained and analyzed 
using PMOD software (PMOD Technologies LLC, 
Zurich, Switzerland). A standardized volume of interest 
(VOI)—including the entire thickness of the defect and 
excluding 0.5 mm of marginal bone, was defined for each 
defect. A density threshold was applied to exclude the 
scaffold (determined by scanning blank scaffolds using 
the same parameters) and classify only mineralized tis-
sues. Percentage defect fills in the VOI, i.e., new bone vol-
ume per total defect volume (nBV/TV), were calculated 
using the PMOD software.

Ex vivo micro‑CT and histology
Immediately after euthanasia, the calvaria were harvested 
and fixed in 10% buffered formalin. For micro-CT (μCT) 
analysis, specimens were scanned using a SCANCO 50 
μCT scanner (SCANCO Medical AG, Bruttisellen, Swit-
zerland) at 90  kV and 200 μA with an isotropic resolu-
tion of 17.2  μm. Scans were reconstructed by orienting 
the drill direction along the Z-axis, with the defect in the 
approximate center of the image, using Amira software 
(Thermo Scientific). A standardized VOI (as described 
for in vivo CT) and threshold were applied to all samples. 
In addition to nBV/TV (as described for the CT), the for-
mation of bone “islands” or isolated areas of new bone 
not connected to the host bone [isolated bone volume 
per total defect volume (iBV/TV)], was calculated using 
ImageJ software [44].

After μCT scanning, the calvaria specimens were pro-
cessed for undecalcified histology. Specimens were dehy-
drated in ascending grades of alcohol and embedded in 
light-curing resin (Technovit 7200 + 1% benzoyl perox-
ide, Kulzer & Co., Wehrheim, Germany). Blocks were 
further processed using EXAKT cutting and grinding 
equipment (EXAKT Apparatebau, Norderstedt, Ger-
many). Standardized thin-ground sections (~ 100  μm) 
parallel to the sagittal suture and perpendicular to the 
parietal bone (Additional file 1: Figure 1), were prepared 
from all specimens and stained with Levi-Laczko dye 
(Morphisto GmbH, Frankfurt, Germany). In this stain-
ing, mature bone appears light pink, woven bone appears 
dark pink, and soft tissue (including collagen) appears 
dark blue [45]. Further, the sections were scanned 
using an Olympus BX61VS digital virtual microscopy 
system (DotSlide 2.4, Olympus, Tokyo, Japan) with a 
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20 × objective resulting in a resolution of 0.32  µm per 
pixel.

For histomorphometric analysis, a standardized region 
of interest (ROI) was defined within each defect exclud-
ing 1  mm of marginal bone. Using Definiens Developer 
XD2 software (Definiens, Munich, Germany), the differ-
ent tissue types (bone/soft tissue/scaffold) were semi-
automatically classified from digital images and further 
corrected using Adobe Photoshop software (Adobe, San 
Jose, CA, USA). The percentage of new bone forma-
tion in the ROI was calculated as a ratio of the area of 
newly formed bone to the total available area (nB.Ar/T.
Ar). Blood vessels, identified by endothelial lining and 
entrapped erythrocytes, were manually counted in the 
ROI.

Statistical analysis
Statistical analysis was performed using the Prism 9 soft-
ware (GraphPad Software, San Diego, CA, USA). Data are 
presented as means (± SD and/or range), unless specified. 
Analyses of gene expression data are based on delta-CT 
values, and results are presented as relative (log/nonlin-
ear) fold changes in 3D versus 2D BMSC using scatter 
plots. Multiplex proteomic data are presented on a loga-
rithmic (log10) scale. All other linear data are presented 
as bar graphs. Normality testing was performed via the 
Shapiro–Wilk test. The Student’s t test, Mann–Whitney 
U test, one-way analysis of variance (ANOVA; followed 
by a post hoc Tukey’s test) or Kruskal–Wallis test, were 
applied as appropriate, and p < 0.05 was considered statis-
tically significant.

Results
Gene expression and cytokine secretion are altered 
in spheroid BMSC
Monolayer BMSC showing characteristic morphol-
ogy, immunophenotype and multi-lineage differentia-
tion potential were expanded in HPL supplemented GM 
(Additional file 1: Figure 2); passage 2 cells were used to 
form 3D spheroids as previously described [17] (Fig. 1a). 
After 7  days, significant upregulations of genes associ-
ated with early osteogenic [bone morphogenetic protein 
2 (BMP2), 13.20-fold, p = 0.0001] and adipogenic dif-
ferentiation [peroxisome proliferator-activated receptor 
gamma (PPARG), 2.63-fold, p = 0.0028] were observed in 
3D versus 2D BMSC; upregulation of chondrogenic dif-
ferentiation gene SRY-box transcription factor 9 (SOX9) 
was not statistically significant (1.45-fold, p > 0.05) 
(Fig.  1b). Genes for extracellular matrix (ECM) compo-
nents associated with late-stage osteogenic differentia-
tion, i.e., bone sialoprotein (BSP; 20.45-fold, p < 0.0001), 
osteocalcin (OCN/BGLAP; 150.83-fold, p < 0.0001) and 
osteopontin (OPN/SPP1; 143.73-fold, p < 0.0001), were 

also upregulated in 3D versus 2D BMSC, regardless of 
osteogenic induction (Fig.  1c). In  vitro mineralization 
was confirmed after 21 days of induction in both 2D and 
3D BMSC (Fig. 1e).

The concentrations of various growth factors and 
chemokines were measured in 2D- and 3D-CM. Sev-
eral growth factors were elevated in 3D- versus 2D-CM: 
fibroblast growth factor (FGF2; p < 0.05), hepatocyte 
growth factor (HGF; p > 0.05), granulocyte colony-stim-
ulating factor (GCSF; p < 0.05), platelet-derived growth 
factor (PDGF-BB; p > 0.05) and transforming growth 
factor beta (TGF-β2; p < 0.05). Chemokine ligands 1 
(CXCL1/GROα; p < 0.05), 10 (CXCL10; p < 0.05) and 5 
(CCL5; p < 0.05) were also elevated in 3D-CM. Stem cell 
factor (SCF; p > 0.05), vascular endothelial growth fac-
tor (VEGF; p < 0.05) and stem cell growth factor beta 
(SCGF-β; p < 0.05) were greater in 2D-CM (Fig.  1d). 
Comparable in vitro wound closure was observed in rat 
BMSC exposed to 2D- or 3D-CM for 24–48 h (p < 0.05; 
Additional file 1: Figure 3).

PLATMC‑HPLG constructs maintain the activity of 2D 
and 3D BMSC in vitro
PLATMC scaffolds were 3D-printed with a pore size of 
350–400  μm and total porosity of 53.96% ± 2.91% as 
determined by µCT. Modified HPLG were prepared by 
addition of fibrinogen and thrombin. When combined 
with HPLG, the scaffold filaments and pores were com-
pletely covered, indicating the potential for high “cell-
seeding efficacy” (Fig. 2a, b).

Constructs containing equal numbers of 2D or 3D 
BMSC were produced; uniform distribution of cells/
spheroids was confirmed soon after encapsulation 
(Fig.  3a). After 24  h, both single and spheroid BMSC 
appeared rounded and suspended mainly within the gels 
and not directly attaching to the scaffold surface (Fig. 3b). 
After 7  days, proliferation and spreading of cells within 
the hydrogels was observed, with a tendency for more 
dead cells in 2D versus 3D BMSC constructs. In the case 
of 3D BMSC, the spheroid structure appeared to still be 
maintained, although several cells appeared to migrate 
from the spheroids into the gel. After 21 days, the hydro-
gel was substantially degraded and 2D BMSC appeared 
to attach and spread on the surface of the PLATMC fila-
ments. In 3D BMSC, the spheroid structure was still pre-
served after 21  days, and, in contrast to 2D BMSC, the 
cells appeared to spread both on the PLATMC filaments 
and in the spaces in between (Fig. 3b).

Gene expression analysis of encapsulated 2D and 3D 
BMSC revealed no significant changes in early [runt-
related transcription factor 2 (RUNX2)], intermediate 
[alkaline phosphatase (ALP), collagen type 1 (COL1)] 
or late (OCN) osteogenic differentiation markers after 
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7  days, regardless of induction (Fig.  4a); a trend for 
upregulation of RUNX2 (1.43-fold) and OCN (1.47-
fold) was observed in induced 3D versus 2D BMSC 
(p > 0.05). Alizarin red staining revealed comparable 
in  vitro mineralization in 2D versus 3D BMSC con-
structs after 14 days in OIM. After 21 days, a trend for 
greater mineralization was observed in 3D versus 2D 
BMSC constructs in OIM (p > 0.05; Fig. 4b, c). Evidence 
of mineralization was also observed in non-induced 
constructs of 2D and 3D BMSC, although significantly 

lower than in the corresponding induced constructs 
(p < 0.05).

Comparable bone regeneration in PLATMC‑HPLG constructs 
with 2D or 3D BMSC in vivo
All experimental animals recovered from surgery and 
no adverse events were observed. In  vivo CT scan-
ning revealed bone regeneration of varying degrees in 
all defects after 4  weeks, increasing progressively up to 
12 weeks, in all groups, i.e., PLATMC-HPLG constructs 

Fig. 1  Characterization of 2D and 3D BMSC. a Representative images of 2D and 3D BMSC, scale bars 100 µm. Expression (fold changes) of 
multipotency-related genes (b) and osteogenesis-related genes (c) in 3D BMSC relative to 2D BMSC after 7 days; the latter were assessed in 
growth (non-induced) or induction media (osteo-induced). Data represent means of 3 experimental replicates; statistical analyses are based on 
delta-Ct values; *p < 0.05; **p < 0.001. d Protein (cytokine) concentrations (pg/mL) in the conditioned media (CM) of 2D and 3D BMSC normalized 
to corresponding DNA contents (ng/mL); data are presented as the logarithm (log10) of the ratio of means of each cytokine in 3D-CM/2D-CM; 
*p < 0.05. e Mineralization in 2D and 3D BMSC detected via Alizarin red staining, scale bars 100 µm. BMP2, bone morphogenetic protein 2; SOX9, sex 
determining region Y-box 9; PPARG, peroxisome proliferator-activated receptor gamma; BSP, bone sialoprotein; OPN/SPP1, osteopontin; OCN/BGLAP 
osteocalcin. Multiplex assay (see Additional file 1: Table 2)
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with 2D BMSC, 3D BMSC or no cells (Fig. 5a). In con-
structs with 2D BMSC and 3D BMSC, the increase in 
bone formation from 4 to 12  weeks was statistically 
significant (p < 0.05; Fig.  5b). Bone formation typically 
started from the defect margins and progressed towards 
the center, closely following the structure of the scaffolds, 
i.e., in the pores and along the printed filaments. Islands 
of new bone, not connected to the host bone, were also 
observed. Although a trend for greater bone formation 
was observed in constructs with 2D BMSC, no signifi-
cant differences were observed between the groups at 4 
(p = 0.437), 8 (p = 0.355) or 12 weeks (p = 0.383).

The in vivo CT findings were confirmed by ex vivo μCT 
after 12 weeks (Fig. 6a). Central slices revealed bone for-
mation throughout the entire thickness of the defects 
with complete bridging, i.e., transverse defect closure, 
in 75%, 62.5% and 33.3% of constructs with 2D BMSC, 
3D BMSC and no cells, respectively. Mean nBV/TV was 
62.47% (SD 19.46%), 51.01% (SD 24.43%) and 43.20% (SD 
30.09%) in constructs with 2D BMSC, 3D BMSC and no 
cells, respectively (p > 0.05). Mean iBV/TV was gener-
ally low but greater in constructs with 3D BMSC (0.29%, 
range 0.03–0.96) versus 2D BMSC (0.08%, range 0–0.44; 
p > 0.05) and no cells (0.03%, range 0–0.07; p < 0.05) 
(Fig. 6b).

Morphology of the regenerated bone was evaluated 
via undecalcified histology of standardized sagittal 

sections in the centre of each defect. New bone mainly 
originated from the endocranial margins of the host 
calvarial bone and consisted predominantly of plexi-
form bone which is a combination of woven bone in 
the center and parallel-fibered bone on the superficial 
layers of bone trabeculae. This type of bone is formed 
during the initial stages of the healing of bone defects, 
and the process of primary bone formation was already 
completed at 12 weeks. No active osteoblasts or osteo-
blast seams were detectable on the trabecular surfaces 
(Fig.  7a). Blood vessels were strongly associated with 
areas of bone regeneration. The process of resorption 
of plexiform bone and replacement with lamellar bone, 
i.e., remodeling, could be observed via bone surfaces 
displaying resorption lacunae (Fig. 5b). No remarkable 
cellular inflammatory response was observed. A thin 
layer of fibrous tissue was always seen surrounding the 
scaffold and bone formation never seemed to occur 
directly on the scaffold surface (Fig.  7b). No visible 
signs of scaffold degradation were observed in any of 
the groups; scaffolds occupied ~ 50% of the defect area. 
Histomorphometry revealed a similar trend as the μCT 
analysis, with mean nB.Ar./T.Ar. of 28.09% (SD: 18.9%), 
24.37% (SD: 18.49%) and 15.34% (SD: 19.51%) in con-
structs with 2D BMSC, 3D BMSC and no cells, respec-
tively (p > 0.05, Fig. 7c). A similar degree of new vessel 
formation was observed in all groups (p > 0.05, Fig. 7c).

Fig. 2  Scaffold-hydrogel constructs. a Stereomicroscopic images of PLATMC scaffolds before (top) and after encapsulation in HPLG (bottom), scale 
bar 2 mm. b Corresponding SEM images of PLATMC and PLATMC-HPLG constructs in low (left; scale bars 300 µm) and high magnification (right; 
scale bars 200 µm)
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Fig. 3  Cell seeding in scaffold-hydrogel constructs. a Distribution of 2D and 3D BMSC in constructs after seeding, scale bars 100 µm. c 
Representative confocal images showing cell viability based on the live (green) and dead (red) assay after 1, 7 and 21 days; corresponding 3D 
z-stack views of constructs at 21 days showing cell spreading on and/or in between the scaffold filaments; dotted lines indicate outlines of the 
printed filaments; scale bars 200 µm
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Discussion
BTE is a promising strategy to treat advanced critical-size 
bone defects. In the present study, we compared the effi-
cacy of PLATMC-HPLG constructs loaded with either 
dissociated (2D) BMSC, spheroid (3D) BMSC or no cells 
(cell-free controls) for bone regeneration in rat-calvarial 
defects. The main findings herein were (a) robust and 
comparable bone formation in constructs containing 
2D or 3D BMSC and (b) favorable but non-significantly 
lower bone formation in cell-free PLATMC-HPLG 
constructs.

The efficacy of BMSC in BTE applications may be 
enhanced via xeno-free and spheroid culture. We recently 
reported the characterization of xeno-free spheroid cul-
tures of BMSC in HPL [17]. Advantages of spheroid 
culture for multipotency, via upregulation of key regu-
lator genes (BMP2, PPARG and SOX9), were confirmed 
herein. Consistent with previous results [17], upregula-
tion of osteogenesis-related genes (BSP, OPN, OCN) 
was observed in 3D versus 2D BMSC herein, even in the 
absence of osteogenic supplements. Moreover, the secre-
tion of several growth factors (FGF2, PDGF-BB, HGF, 
TGF-β2) and chemokines involved in tissue regeneration 
was also enhanced in 3D versus 2D BMSC. Thus, the two 
major mechanisms of MSC action, i.e., differentiation 
and paracrine function, appeared to be enhanced in 3D 
spheroids. Additionally, others have reported benefits of 
spheroid culture for MSC immunomodulatory functions 
in the context of tissue regeneration [21, 46, 47].

Although accumulating evidence suggests clear ben-
efits of spheroid culture to enhance MSC efficacy, the 
optimal mode of spheroid delivery to regeneration sites 
has not been adequately investigated. Conventional strat-
egies for in vivo delivery involve seeding of cells directly 
on scaffolds to allow attachment and spreading in  vitro 
for a defined period prior to implantation. However, 
this method may not be optimal for delivering spheroids 
as it facilitates dissociation and migration of cells from 
the spheres during in  vitro culture, thus compromis-
ing the benefits of cell aggregation. Interestingly, in one 
study, superior bone formation in rat-calvaria defects 
was observed when BMSC spheroids were transplanted 
as “suspensions” rather than when seeded on beta-tri-
calcium phosphate (β-TCP) granules [22]. In contrast to 
direct seeding, encapsulation of spheroids in hydrogel 

scaffolds maintains their 3D assembly at the time of 
in vivo implantation. Recent studies have reported supe-
rior in  vitro function and in  vivo bone formation when 
using BMSC spheroids versus dissociated cells encapsu-
lated in alginate hydrogels [29, 48, 49]. Since HPL was 
used as a xeno-free supplement for BMSC culture, its 
application was extended as a hydrogel carrier, via modi-
fication of previous methods [32]. Further, HPLG were 
supplemented with fibrin to improve their mechanical 
properties and prolong degradation, without compromis-
ing MSC function [28, 50–52].

In addition to HPLG, copolymer scaffolds were used 
to deliver the cells in  vivo. Complex bone defects often 
necessitate the use of rigid biomaterial scaffolds, and in 
such cases hydrogels alone may be insufficient. 3D print-
ing technology offers promising solutions for produc-
ing customized scaffolds to treat such defects. Although 
several designs and materials for 3D-printed scaffolds 
have been studied, their in  vivo applications as carri-
ers for human MSC have been limited [36]. PLATMC 
is reported to be a promising copolymer for various tis-
sue engineering applications, particularly due to its 
mechanical properties and biocompatibility [37]; to 
our knowledge, no studies have yet tested its feasibility 
for BTE. Therefore, in the present study, human BMSC 
encapsulated in HPLG were combined with 3D-printed 
PLATMC scaffolds to represent the classical tissue engi-
neering “triad” [53].

In a previous study we reported spontaneous upregu-
lation of several osteogenesis-related genes in 3D versus 
2D BMSC, regardless of osteogenic induction [13]. How-
ever, in the present study, no significant upregulation of 
RUNX2, ALP, COL1 or OCN was observed in 3D versus 
2D BMSC following encapsulation in HPLG, regardless 
of osteogenic induction. This suggested that encapsula-
tion in HPLG attenuated differences in gene expression 
between 2 and 3D BMSC. Nevertheless, a trend for supe-
rior in vitro mineralization was observed in encapsulated 
3D versus 2D BMSC after 21  days of osteogenic induc-
tion. Considerable mineralization was also observed in 
non-induced constructs of 3D and 2D BMSC, suggesting 
a promotive effect of the HPLG on the osteogenic dif-
ferentiation. Taken together, these findings suggest that 
the HPLG may have itself initiated the osteogenic dif-
ferentiation of 2D and 3D BMSC (regardless of media 

Fig. 4  In vitro osteogenic differentiation. a mRNA fold changes of osteogenesis-related genes in 3D-relative to 2D-BMSC constructs after 
non-induced or osteogenic (osteo-induced) culture for 7 days. Data represent means (n = 3); no significant differences in 3D versus 2D BMSC for 
any of the genes. b Representative macroscopic and corresponding microscopic images of in vitro mineralization (Alizarin red S) in 2D and 3D 
BMSC constructs after non-induced or osteo-induced culture for 21 days, scale bars 100 µm. c Quantification of Alizarin red staining via absorbance 
measurements in non-induced and induced 2D and 3D BMSC constructs; data represent means and SD (n = 3 or 4) of absorbance values relative 
to the non-induced 2D BMSC group. RUNX2 runt-related transcription factor 2; ALPL alkaline phosphatase, COL1A2, collagen type 1-alpha 2; OCN/
BGLAP, osteocalcin

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  In vivo CT scanning. Representative reconstructed CT scans showing progression and distribution of bone regeneration (a) and 
corresponding quantification (b) in constructs with 2D BMSC, 3D BMSC and no cells from 4 to 12 weeks (w); data represent means ± SD; **p < 0.01; 
*p < 0.05
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supplements), thereby attenuating differences in gene 
expression, but promoting mineralization. Indeed, when 
used as a culture supplement, HPL promotes the osteo-
genic differentiation of MSC in  vitro [54–56]. Moreo-
ver, several studies have reported positive effects of 

platelet-derived growth factors, e.g., PRP, on MSC osteo-
genic differentiation both in vitro and in vivo [23, 57–60]. 
Since HPL is being increasingly used for clinical-grade 
MSC expansion and may be easily and inexpensively pro-
duced using outdated platelet concentrates from blood 

Fig. 6  Micro-CT analysis. a Representative slice and 3D reconstructed (Rec) images of sub-optimal, average and optimal bone regeneration 
(based on quantitative analysis) in constructs with 2D BMSC, 3D BMSC and no cells after 12 weeks. b Representative images of defect bridging. c 
Quantification of total bone (nBV/TV%) and island bone regeneration (iBV/TV%); o indicates an outlier value (iBV/TV 1.70%); data represent means, 
*p < 0.05
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Fig. 7  Histological analysis. a Representative low-magnification images from central sections of defects receiving constructs of 2D BMSC, 3D BMSC 
or no cells after 12 weeks, scale bars 1 mm; black arrows indicate original defect margins. Scalp and brain tissues are intact; mature bone appears 
light pink, woven bone dark pink and collagen dark blue. b Corresponding high-magnification images of newly formed bone, scale bars 100 µm 
(top panel) and 50 µm (bottom panel); black arrows indicate resorption lacunae suggestive of active remodeling. c Quantification of new bone 
formation (nB.Ar./T.Ar.%) and vessel counts (n = number/defect); data represent means
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establishments [10], HPLG represents a promising and 
cost-effective tool for BTE.

To test their potential for bone regeneration, 
PLATMC-HPLG constructs with 2D BMSC or 3D 
BMSC were implanted into rat-calvarial defects. In both 
groups, substantial bone regeneration could already be 
detected in the earliest in  vivo CT scans after 4  weeks. 
After 12 weeks, robust bone regeneration was observed 
in both groups with maximum nBV/TV values of 91.5% 
and 87.56% and complete bridging in 6/8 and 5/8 defects 
in 2D and 3D BMSC constructs, respectively. Indeed, 
μCT analysis revealed a higher incidence of de novo 
bone island formation (iBV/TV) in 3D BMSC constructs, 
which could be attributed to in  situ mineralization of 
the implanted spheroids with subsequent remodeling 
by host cells. However, since the formation of similar 
bone islands has also been reported in calvarial defects 
treated with only growth factors [44], i.e., without exog-
enous cells or scaffolds, the cellular origin of the bone 
islands remains elusive. In context, previous studies have 
reported enhanced regeneration in experimental bone 
defects treated with 3D versus 2D BMSC from alloge-
neic (rat) [25] or human sources [22, 29]. Similar out-
comes were reported also in the context of periodontal 
ligament-derived cells (PDLC) in mouse calvarial defects 
[24]. Conversely, a recent study reported no differences in 
the healing of mouse femoral defects treated with either 
2D or 3D human BMSC encapsulated in fibrin gels [61]. 
Consistent with this finding, no significant differences in 
the overall quantity or quality of regenerated bone were 
observed between 2 and 3D BMSC constructs in the pre-
sent study. Notably, in the previous studies [22, 25, 29, 
61], BMSC were cultured in OIM prior to implantation. 
Indeed, our in  vitro data indicated superior mineraliza-
tion in induced versus non-induced 2D and 3D BMSC 
constructs, despite some mineralization also being 
observed in non-induced constructs (“induction” in this 
context refers to the use of chemical stimulants such as 
dexamethasone, L-ascorbic acid and β-glycerophosphate, 
and not recombinant growth factors, such as BMP2). 
Nevertheless, for the in  vivo experiments herein, non-
induced constructs were used based on trends in recent 
clinical studies of BTE, and a preference for “minimal 
manipulation” of cells by regulatory authorities [1].

Although immunocompromised rodents are commonly 
reported animal models for testing human MSC [62], the 
precise mechanism(s) of bone formation in these ani-
mals, and the interactions between transplanted (human) 
and native (recipient) cells, have not been fully eluci-
dated. In the present study, the histological technique 
(undecalcified) and lack of human-specific antibodies 
with low host-tissue cross-reactivity, precluded deter-
mination of the origin of newly formed bone tissues, i.e., 

whether these were formed by engraftment and differen-
tiation of the transplanted human BMSC or via recruit-
ment of host (rat) cells. Nevertheless, previous studies 
have reported that, depending on the immune status of 
experimental animals, transplanted BMSC may not dif-
ferentiate into osteoblasts, but rather promote bone for-
mation via paracrine stimulation of host cells [63–66]. In 
context, although significant differences were observed 
herein between the CM, i.e., paracrine effectors, of 2D 
and 3D BMSC, there were no differences in their ability 
to promote in  vitro wound healing in rat BMSC (Addi-
tional file 1: Figure 3). Moreover, differences in cytokine 
secretions of 2D and 3D BMSC were not assessed follow-
ing encapsulation in the constructs, which, like the dif-
ferences in gene expression, may have been attenuated 
following encapsulation. Therefore, it may be speculated 
whether differences in paracrine functions between 2 and 
3D BMSC (or a lack thereof ), in addition to cross-spe-
cies-related factors, contributed to the observed in  vivo 
outcomes.

Comparatively lower, but favorable, regeneration was 
observed in cell-free (versus cell-loaded) PLATMC-
HPLG constructs herein, with up to 84.9% nBV/TV 
(maximum) and bridging in 2/6 defects. This suggested 
(a) a possible stimulatory effect from HPLG on in  vivo 
bone formation and (b) further supported the reports 
that osteogenesis mainly occurs via tissue-resident pro-
genitor cells, and not via differentiation of the trans-
planted BMSC [63]. Indeed, HPL is known to contain 
a wide array of physiological growth factors which pro-
mote MSC differentiation in  vitro [10]. In context, one 
study reported superior bone regeneration in calva-
rial defects when using 3D-printed PCL scaffolds coated 
with “freeze-dried PRP” versus uncoated scaffolds; opti-
mal bone regeneration was observed when using PRP 
activated via freezing/thawing (similar to HPL) versus 
thrombin/calcium activation [67]. Indeed, the PLATMC 
scaffolds alone showed substantially lower bone regen-
eration herein, i.e., 9% and 15% defect fill, in two ani-
mals. Notably, no differences in bone regeneration were 
observed between PLATMC scaffolds with and without 
HPLG in these two animals (Additional file 1: Figure 4). 
Nevertheless, we cannot rule out a possible stimulatory 
effect of the hydrogel on bone regeneration in our experi-
ments. Such a potentially confounding effect, together 
with a lack of osteogenic pre-induction of cells, and the 
presence of local physiological stimuli in the defect sites, 
may have masked differences between 2 and 3D BMSC in 
this orthotopic model.

In context of the in  vivo outcomes herein, it must be 
acknowledged that the scaffold itself, although excluded 
from the μCT analysis, occupied a considerable volume 
of the defects and did not show any signs of degradation 
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or replacement during the experimental period. 
PLATMC is reported to be a promising copolymer for 
various tissue engineering applications mainly due to its 
biocompatibility [35], although little is known regard-
ing its in vivo degradation profile. Optimal properties of 
scaffolds for bone regeneration have been defined, such 
as an average pore size of 300–400 μm (with ≥ 50% total 
porosity) [68], and a degradation profile corresponding to 
the physiological rate of bone formation [69]. Although 
the recommendations for physical properties, i.e., pore 
size of ~ 400  μm and total porosity > 50%, were incor-
porated into the design of the scaffolds herein, no prior 
assessment of their degradation profile was performed. 
Our in  vivo observations revealed that bone formation 
occurred around—but not in direct contact with, the 
printed filaments, i.e., the scaffolds were incorporated 
within but not replaced by the regenerated bone. How-
ever, no specific in  vitro or in  vivo assessment of scaf-
fold degradation was performed herein. Moreover, no 
mechanical testing of the regenerated tissues was per-
formed. Thus, longer-term outcomes such as in  vivo 
degradation of PLATMC and the mechanical and biolog-
ical function of these scaffold-bone “composite tissues,” 
require further investigation.

Conclusions
Encapsulation of spheroid (3D) and dissociated (2D) 
BMSC in PLATMC-HPLG constructs attenuated the dif-
ferences in osteogenic gene expression observed in stand-
ard 3D spheroid versus 2D monolayer cultures. Despite 
a non-significant trend for superior in  vitro mineraliza-
tion in constructs of 3D BMSC versus 2D BMSC, in vivo 
implantation revealed comparable bone regeneration 
between the groups in rat-calvarial defects. Interestingly, 
favorable but non-significantly lower bone regeneration 
was also observed in cell-free PLATMC-HPLG con-
structs. In summary, regardless of spheroid or monolayer 
cell culture, PLATMC-HPLG constructs represent prom-
ising scaffolds for BTE applications.
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