12 research outputs found
Feasibility of climate-optimized air traffic routing for trans-Atlantic flights
Current air traffic routing is motivated by minimizing economic costs, such as fuel use. In addition
to the climate impact of CO2 emissions from this fuel use, aviation contributes to climate change
through non-CO2 impacts, such as changes in atmospheric ozone and methane concentrations and
formation of contrail-cirrus. These non-CO2 impacts depend significantly on where and when the
aviation emissions occur. The climate impact of aviation could be reduced if flights were routed to
avoid regions where emissions have the largest impact. Here, we present the first results where a
climate-optimized routing strategy is simulated for all trans-Atlantic flights on 5 winter and
3 summer days, which are typical of representative winter and summer North Atlantic weather
patterns. The optimization separately considers eastbound and westbound flights, and accounts for
the effects of wind on the flight routes, and takes safety aspects into account. For all days
considered, we find multiple feasible combinations of flight routes which have a smaller overall
climate impact than the scenario which minimizes economic cost. We find that even small changes
in routing, which increase the operating costs (mainly fuel) by only 1% lead to considerable
reductions in climate impact of 10%. This cost increase could be compensated by market-based
measures, if costs for non-CO2 climate impacts were included. Our methodology is a starting point
for climate-optimized flight planning, which could also be applied globally. Although there are
challenges to implementing such a system, we present a road map with the steps to overcome these
Mitigation of Non-CO2 Aviationâs Climate Impact by Changing Cruise Altitudes
Aviation is seeking for ways to reduce its climate impact caused by CO2 emissions and non-CO2 effects. Operational measures which change overall flight altitude have the potential to reduce climate impact of individual effects, comprising CO2 but in particular non-CO2 effects. We study the impact of changes of flight altitude, specifically aircraft flying 2000 feet higher and lower, with a set of global models comprising chemistry-transport, chemistry-climate and general circulation models integrating distinct aviation emission inventories representing such alternative flight altitudes, estimating changes in climate impact of aviation by quantifying radiative forcing and induced temperature change. We find in our sensitivity study that flying lower leads to a reduction of radiative forcing of non-CO2 effects together with slightly increased CO2 emissions and impacts, when cruise speed is not modified. Flying higher increases radiative forcing of non-CO2 effects by about 10%, together with a slight decrease of CO2 emissions and impacts. Overall, flying lower decreases aviation-induced temperature change by about 20%, as a decrease of non-CO2 impacts by about 30% dominates over slightly increasing CO2 impacts assuming a sustained emissions scenario. Those estimates are connected with a large but unquantified uncertainty. To improve the understanding of mechanisms controlling the aviation climate impact, we study the geographical distributions of aviation-induced modifications in the atmosphere, together with changes in global radiative forcing and suggest further efforts in order to reduce long standing uncertainties
Influence of weather situation on non-CO<sub>2</sub> aviation climate effects: the REACT4C climate change functions
Emissions of aviation include CO2, H2O, NOx, sulfur oxides, and soot. Many studies have investigated the annual mean climate impact of aviation emissions. While CO2 has a long atmospheric residence time and is almost uniformly distributed in the atmosphere, non-CO2 gases and particles and their products have short atmospheric residence times and are heterogeneously distributed. The climate impact of non-CO2 aviation emissions is known to vary with different meteorological background situations. The aim of this study is to systematically investigate the influence of characteristic weather situations on aviation climate effects over the North Atlantic region, to identify the most sensitive areas, and to potentially detect systematic weather-related similarities. If aircraft were re-routed to avoid climate-sensitive regions, the overall aviation climate impact might be reduced. Hence, the sensitivity of the atmosphere to local emissions provides a basis for the assessment of weather-related, climate-optimized flight trajectory planning. To determine the climate change contribution of an individual emission as a function of location, time, and weather situation, the radiative impact of local emissions of NOx and H2O to changes in O3, CH4, H2O and contrail cirrus was computed by means of the ECHAM5/MESSy Atmospheric Chemistry model. From this, 4-dimensional climate change functions (CCFs) were derived. Typical weather situations in the North Atlantic region were considered for winter and summer. Weather-related differences in O3, CH4, H2O, and contrail cirrus CCFs were investigated. The following characteristics were identified: enhanced climate impact of contrail cirrus was detected for emissions in areas with large-scale lifting, whereas low climate impact of contrail cirrus was found in the area of the jet stream. Northwards of 60ââN, contrails usually cause climate warming in winter, independent of the weather situation. NOx emissions cause a high positive climate impact if released in the area of the jet stream or in high-pressure ridges, which induces a south- and downward transport of the emitted species, whereas NOx emissions at, or transported towards, high latitudes cause low or even negative climate impact. Independent of the weather situation, total NOx effects show a minimum at âŒ250âhPa, increasing towards higher and lower altitudes, with generally higher positive impact in summer than in winter. H2O emissions induce a high climate impact when released in regions with lower tropopause height, whereas low climate impact occurs for emissions in areas with higher tropopause height. H2O CCFs generally increase with height and are larger in winter than in summer. The CCFs of all individual species can be combined, facilitating the assessment of total climate impact of aircraft trajectories considering CO2 and spatially and temporally varying non-CO2 effects. Furthermore, they allow for the optimization of aircraft trajectories with reduced overall climate impact. This also facilitates a fair evaluation of trade-offs between individual species. In most regions, NOx and contrail cirrus dominate the sensitivity to local aviation emissions. The findings of this study recommend considering weather-related differences for flight trajectory optimization in favour of reducing total climate impact
Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions
The influence of different weather situations on non-CO2 aviation climate impact is investigated. The aim is to identify systematic weather related sensitivities. If aircraft trajectories avoid the most sensitive areas, the overall climate impact might be reduced. An enhanced significance of the position of emission release is identified in relation to high pressure systems, in relation to the jet stream, in relation to polar night, and in relation to the altitude of the tropopause. The results of this study represent a comprehensive dataset for studies aiming at weather dependent flight trajectory optimization reducing total climate impact
Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory
We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014. Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration. Using CEDS, we estimate a net RFari in 2014 relative to 1750 of â0.17âWâmâ2, significantly weaker than the IPCC AR5 2011â1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes
Assessing the climate impact of formation flights
Emissions of aviation include CO2, H2O, NOx and particles. While CO2 has a long atmospheric residence time and is uniformly distributed in the atmosphere, non-CO2 gases, particles and their products have short atmospheric residence times and are heterogeneously distributed. Their climate effects depend on chemical and meteorological background conditions during emission, which vary with geographic location, altitude, time, local insolation, actual weather, etc. This spatial and temporal variability can be utilized for aviation climate impact mitigation by identifying aircraft trajectories which avoid climate-sensitive regions. To determine the climate change contribution of individual emissions as function of 3-dimensional position, time and weather situation, contributions of local emissions to changes in O3, CH4, H2O and contrail-cirrus were computed by means of the ECHAM5/MESSy Atmospheric Chemistry model and four-dimensional climate change functions (CCFs) were derived thereof. Typical weather situations in the North Atlantic region were considered for winter and summer. For all non-CO2 species included in the study, we found distinct weather related differences with respect to their climate impact. Depending on the species, we found enhanced significance of the position of emission release in relation to high pressure systems, in relation to the jet stream, in relation to polar night and in relation to the tropopause altitude. The dominating parameters were found to be contrail-cirrus and total NOx. The results of this study represent a comprehensive basis for weather dependent flight trajectory optimization studies. Furthermore it constitutes the groundwork for the development of more generally applicable algorithmic CCFs.Aircraft Noise and Climate Effect
Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory
We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014. Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration. Using CEDS, we estimate a net RFari in 2014 relative to 1750 of â0.17âWâmâ2, significantly weaker than the IPCC AR5 2011â1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes
The use of QBO, ENSO, and NAO perturbations in the evaluation of GOME-2 MetOp A total ozone measurements
In this work we present evidence that quasi-cyclical perturbations in total ozone (quasi-biennial oscillation â QBO, El NiñoâSouthern Oscillation â ENSO, and North Atlantic Oscillation â NAO) can be used as independent proxies in evaluating Global Ozone Monitoring Experiment (GOME) 2 aboard MetOp A (GOME-2A) satellite total ozone data, using ground-based (GB) measurements, other satellite data, and chemical transport model calculations. The analysis is performed in the frame of the validation strategy on longer time scales within the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Atmospheric Composition Monitoring (AC SAF) project, covering the period 2007â2016. Comparison of GOME-2A total ozone with ground observations shows mean differences of about â0.7±1.4â% in the tropics (0â30â), about +0.1±2.1â% in the mid-latitudes (30â60â), and about +2.5±3.2â% and 0.0±4.3â% over the northern and southern high latitudes (60â80â), respectively. In general, we find that GOME-2A total ozone data depict the QBOâENSOâNAO natural fluctuations in concurrence with the co-located solar backscatter ultraviolet radiometer (SBUV), GOME-type Total Ozone Essential Climate Variable (GTO-ECV; composed of total ozone observations from GOME, SCIAMACHY â SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY, GOME-2A, and OMI â ozone monitoring instrument, combined into one homogeneous time series), and ground-based observations. Total ozone from GOME-2A is well correlated with the QBO (highest correlation in the tropics of +0.8) in agreement with SBUV, GTO-ECV, and GB data which also give the highest correlation in the tropics. The differences between deseazonalized GOME-2A and GB total ozone in the tropics are within ±1â%. These differences were tested further as to their correlations with the QBO. The differences had practically no QBO signal, providing an independent test of the stability of the long-term variability of the satellite data. Correlations between GOME-2A total ozone and the Southern Oscillation Index (SOI) were studied over the tropical Pacific Ocean after removing seasonal, QBO, and solar-cycle-related variability. Correlations between ozone and the SOI are on the order of +0.5, consistent with SBUV and GB observations. Differences between GOME-2A and GB measurements at the station of Samoa (American Samoa; 14.25ââS, 170.6ââW) are within ±1.9â%. We also studied the impact of the NAO on total ozone in the northern mid-latitudes in winter. We find very good agreement between GOME-2A and GB observations over Canada and Europe as to their NAO-related variability, with mean differences reaching the ±1â% levels. The agreement and small differences which were found between the independently produced total ozone datasets as to the influence of the QBO, ENSO, and NAO show the importance of these climatological proxies as additional tool for monitoring the long-term stability of satelliteâground-truth biases
Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
In this paper, we compare model calculations of ozone profiles and their variability for the period 1998 to 2016 with satellite and lidar profiles at five ground-based stations. Under the investigation is the temporal impact of the stratospheric halogen reduction (chemical processes) and increase in greenhouse gases (i.e., global warming) on stratospheric ozone changes. Attention is given to the effect of greenhouse gases on ultraviolet-B radiation at ground level. Our chemistry transport and chemistry climate models (Oslo CTM3 and EMAC CCM) indicate that (a) the effect of halogen reduction is maximized in ozone recovery at 1â7 hPa and observed at all lidar stations; and (b) significant impact of greenhouse gases on stratospheric ozone recovery is predicted after the year 2050. Our study indicates that solar ultraviolet-B irradiance that produces DNA damage would increase after the year 2050 by +1.3% per decade. Such change in the model is driven by a significant decrease in cloud cover due to the evolution of greenhouse gases in the future and an insignificant trend in total ozone. If our estimates prove to be true, then it is likely that the process of climate change will overwhelm the effect of ozone recovery on UV-B irradiance in midlatitudes
A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (ÏCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of ÏCH4 differences among 10 models are the flux of UV light to the troposphere (indicated by the photolysis frequency JO1D), the mixing ratio of tropospheric ozone (O3), the abundance of nitrogen oxides (NOxâĄNO+NO2), and details of the various chemical mechanisms that drive OH. Water vapour, carbon monoxide (CO), the ratio of NO:NOx, and formaldehyde (HCHO) explain moderate differences in ÏCH4, while isoprene, methane, the photolysis frequency of NO2 by visible light (JNO2), overhead ozone column, and temperature account for little to no model variation in ÏCH4. We also apply the NNs to analysis of temporal trends in OH from 1980 to 2015. All models that participated in the specified dynamics historical simulation for CCMI demonstrate a decline in ÏCH4 during the analysed timeframe. The significant contributors to this trend, in order of importance, are tropospheric O3, JO1D, NOx, and H2O, with CO also causing substantial interannual variability in OH burden. Finally, the identified trends in ÏCH4 are compared to calculated trends in the tropospheric mean OH concentration from previous work, based on analysis of observations. The comparison reveals a robust result for the effect of rising water vapour on OH and ÏCH4, imparting an increasing and decreasing trend of about 0.5â% decadeâ1, respectively. The responses due to NOx, ozone column, and temperature are also in reasonably good agreement between the two studies