2,486 research outputs found

    Epitaxial growth of Cu (001) on Si (001): Mechanisms of orientation development and defect morphology

    Get PDF
    We describe the evolution of microstructure during ultrahigh vacuum ion beam sputter deposition of Cu (001) at room temperature on hydrogen-terminated Si (001). In situ reflection high energy electron diffraction indicates growth of an epitaxial Cu (001) film on Si (001) with the intensity of the Bragg rods sharpening during 5–20 nm of Cu film growth. Post-growth x-ray diffraction indicates the Cu film has a mosaic spread of (001) textures of about ±2° and that a small fraction (0.001–0.01) is of (111) textures. High-resolution transmission electron microscopy shows an abrupt Cu/Si interface with no interfacial silicide, and reveals an evolution in texture with Cu thickness so as to reduce the mosaic spread about (001). Moiré contrast suggests a nearly periodic elastic strain field extending into the Cu and Si at the interface. Other aspects of film growth which are critical to epitaxy are also discussed

    Analytical solution for cauchy reaction-diffusion problems by homotopy perturbation method

    Get PDF
    In this paper, the homotopy-perturbation method (HPM) is applied to obtain approximate analytical solutions for the Cauchy reaction-diffusion problems. HPM yields solutions in convergent series forms with easily computable terms. The HPM is tested for several examples. Comparisons of the results obtained by the HPM with that obtained by the Adomian decomposition method (ADM), homotopy analysis method (HAM) and the exact solutions show the efficiency of HPM

    Variable viscosity and thermophoresis effects on Darcy mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction

    Get PDF
    An analysis is presented to investigate the effect of thermophoresis particle deposition and variable viscosity on Darcy mixed convective heat and mass transfer of a viscous, incompressible fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection. The viscosity of the fluid is assumed to be a inverse linear function of temperature. The results are analyzed for the effect of different physical parameters, such as variable viscosity, magnetic, chemical reaction and thermophoresis parameters, on the flow, the heat and mass transfer characteristics

    Photon signature analysis using template matching

    Get PDF
    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming ? photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP TM) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly

    Study of heat transport in a porous medium under G-jitter and internal heating effects.

    Get PDF
    In this article we study the combined effect of internal heating and time-periodic gravity modulation on thermal instability in a closely packed anisotropic porous medium, heated from below and cooled from above. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the porous medium. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg–Landau equation derived for the stationary mode of convection. The effects of various parameters such as; internal Rayleigh number, amplitude and frequency of gravity modulation, thermo-mechanical anisotropies, and Vadász number on heat transport has been analyzed. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further it is found that the heat transport can also be controlled by suitably adjusting the external parameters of the system

    Numerical Investigation of the Effect of Magnetic Field on Natural Convection in a Curved-Shape Enclosure

    Get PDF
    This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number

    Effect of internal-heating on weakly non-linear stability analysis of Rayleigh-Bénard convection under g-jitter

    Get PDF
    In this paper, we study the combined effect of internal-heating and time-periodic gravity modulation on thermal instability in a viscous fluid layer, heated from below. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the fluid layer. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg-Landau equation derived for the stationary mode of convection. Effects of various parameters such as internal Rayleigh number, Prandtl number, and amplitude and frequency of gravity modulation have been analysed on heat transport. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further, it is found that the heat transport can be controlled by suitably adjusting the external parameters of the system. © 2013 Elsevier B.V. All rights reserved
    corecore