2,486 research outputs found
Recommended from our members
Modelling Dynamically Re-sizeable Electrodes (DRE) for Targeted Transcutaneous Measurements in Impedance Plethysmography
Impedance plethysmography of extremities typically uses band electrodes around limbs to monitor changes in blood volume. This often causes monitored blood variations to only generate minuscule impedance values relative to the measured baseline, attributed to the tissue surrounding the artery or vein of interest. Smaller, ECG type electrodes can provide a larger signal, however their output is very easily affected by the placement of the electrodes relative to the targeted vasculature. This paper presents a novel method to adjust the active surface of electrodes, introducing Dynamically Re-sizeable Electrodes (DRE), to only target the exact area of interest, forming localised electrodes, without having to manually re-position them. Elongated rectangular electrodes were partitioned into smaller electrode segments, interconnected through custom circuitry. For the development and assessment of the DRE system, work was carried out both experimentally in-vitro on gelatine phantoms using custom switching circuits and through finite element modelling (FEM) simulations in COMSOL. A scanning sequence made use of DRE in single segment variable tetra-pole (SSVT) mode proved capable to identify the transcutaneous location of the blood vessel of interest and the specific electrode segments located in its vicinity. Impedance measurements were then taken using these segments connected to form localised electrodes only placed over the targeted vessel. The resulting localised electrodes exhibited up to 28% increased sensitivity to blood variations relative to larger electrodes
Report on thirteen cmb rubber clones with respect to south american leaf blight (salb)
Epitaxial growth of Cu (001) on Si (001): Mechanisms of orientation development and defect morphology
We describe the evolution of microstructure during ultrahigh vacuum ion beam sputter deposition of Cu (001) at room temperature on hydrogen-terminated Si (001). In situ reflection high energy electron diffraction indicates growth of an epitaxial Cu (001) film on Si (001) with the intensity of the Bragg rods sharpening during 5–20 nm of Cu film growth. Post-growth x-ray diffraction indicates the Cu film has a mosaic spread of (001) textures of about ±2° and that a small fraction (0.001–0.01) is of (111) textures. High-resolution transmission electron microscopy shows an abrupt Cu/Si interface with no interfacial silicide, and reveals an evolution in texture with Cu thickness so as to reduce the mosaic spread about (001). Moiré contrast suggests a nearly periodic elastic strain field extending into the Cu and Si at the interface. Other aspects of film growth which are critical to epitaxy are also discussed
Analytical solution for cauchy reaction-diffusion problems by homotopy perturbation method
In this paper, the homotopy-perturbation method (HPM) is applied to obtain approximate analytical solutions for the Cauchy reaction-diffusion problems. HPM yields solutions in convergent series forms with easily computable terms. The HPM is tested for several examples. Comparisons of the results obtained by the HPM with that obtained by the Adomian decomposition method (ADM), homotopy analysis method (HAM) and the exact solutions show the efficiency of HPM
Variable viscosity and thermophoresis effects on Darcy mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction
An analysis is presented to investigate the effect of thermophoresis particle deposition and variable viscosity on Darcy mixed convective heat and mass transfer of a viscous, incompressible fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection. The viscosity of the fluid is assumed to be a inverse linear function of temperature. The results are analyzed for the effect of different physical parameters, such as variable viscosity, magnetic, chemical reaction and thermophoresis parameters, on the flow, the heat and mass transfer characteristics
Photon signature analysis using template matching
We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming ? photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP TM) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly
Study of heat transport in a porous medium under G-jitter and internal heating effects.
In this article we study the combined effect of internal heating and time-periodic gravity modulation on thermal instability in a closely packed anisotropic porous medium, heated from below and cooled from above. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the porous medium. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg–Landau equation derived for the stationary mode of convection. The effects of various parameters such as; internal Rayleigh number, amplitude and frequency of gravity modulation, thermo-mechanical anisotropies, and Vadász number on heat transport has been analyzed. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further it is found that the heat transport can also be controlled by suitably adjusting the external parameters of the system
Numerical Investigation of the Effect of Magnetic Field on Natural Convection in a Curved-Shape Enclosure
This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number
Effect of internal-heating on weakly non-linear stability analysis of Rayleigh-Bénard convection under g-jitter
In this paper, we study the combined effect of internal-heating and time-periodic gravity modulation on thermal instability in a viscous fluid layer, heated from below. The time-periodic gravity modulation, considered in this problem can be realized by vertically oscillating the fluid layer. A weak non-linear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has been obtained in terms of the amplitude of convection which is governed by the non-autonomous Ginzburg-Landau equation derived for the stationary mode of convection. Effects of various parameters such as internal Rayleigh number, Prandtl number, and amplitude and frequency of gravity modulation have been analysed on heat transport. It is found that the response of the convective system to the internal Rayleigh number is destabilizing. Further, it is found that the heat transport can be controlled by suitably adjusting the external parameters of the system. © 2013 Elsevier B.V. All rights reserved
- …
