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Abstract In this article we study the combined effect of internal heating and time-periodic
gravity modulation on thermal instability in a closely packed anisotropic porous medium,
heated from below and cooled from above. The time-periodic gravity modulation, consid-
ered in this problem can be realized by vertically oscillating the porous medium. A weak
non-linear stability analysis has been performed by using power series expansion in terms of
the amplitude of gravity modulation, which is assumed to be small. The Nusselt number has
been obtained in terms of the amplitude of convection which is governed by the non-autono-
mous Ginzburg–Landau equation derived for the stationary mode of convection. The effects
of various parameters such as; internal Rayleigh number, amplitude and frequency of gravity
modulation, thermo-mechanical anisotropies, and Vadász number on heat transport has been
analyzed. It is found that the response of the convective system to the internal Rayleigh
number is destabilizing. Further it is found that the heat transport can also be controlled by
suitably adjusting the external parameters of the system.
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List of Symbols

Variables
A Amplitude of convection
d Height of the fluid layer
Da Darcy number Da = Kz/d2

g0 Mean of gravity
Q Internal heat source
kc Critical wave number
Nu Nusselt number
p Reduced pressure
Pr Prandtl number, Pr = ν/κTz

Ra Thermal Rayleigh number, Ra = αT g0 Kz(�T )d/νκT z
R0c Critical Rayleigh number
Ri Internal Rayleigh number, Ri = Qd2/κT z
V a Vadász number, V a = φPr/Da
ξ Mechanical anisotropy parameter ξ = Kx/Kz

η Thermal anisotropy parameter η = κT x/κT z
t Time
T Temperature
�T Temperature difference across the fluid layer
x, y, z Space co-ordinates

Greek Symbols
αT Coefficient of thermal expansion
δ2 Horizontal wave number k2

c + π2

δ1 Amplitude of temperature modulation
� Frequency of modulation
ε Perturbation parameter

γ Heat capacity ratio (ρcp)m
(ρcp) f

K Permeability tensor
κT Effective thermal diffusivity
μ Effective dynamic viscosity of the fluid

ν Effective kinematic viscosity,
(
μ
ρ0

)

φ Porosity
ψ Stream function
ρ Fluid density
τ Slow time τ = ε2t

Other Symbols
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∂z2
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Subscripts
b Basic state
c Critical
0 Reference value

Superscripts
′ Perturbed quantity
* Dimensionless quantity
st Stationary

1 Introduction

The study of thermal instability in a fluid saturated horizontal porous medium has received
a considerable attention due to its numerous applications in many practical problems. It has
a wide range of applications in geophysics, oil recovery process, in petroleum industry, and
in solidification of polymeric liquids. A comprehensive account of many studies on thermal
instability in porous media and their applications in various fields is given in the excel-
lent books of Ingham and Pop (1998), Ingham and Pop (2005), Vafai (2000), Vafai (2005),
Straughan (2004), Nield and Bejan (2006), and Vadász (2008).

There are many practically important situations, where the porous material offers its own
source of heat. This gives a different way in which a convective flow can be set up through the
local heat generation within the porous media. Such a situation can occur through radioactive
decay or through, in the present perspective, a relatively weak exothermic reaction which can
take place within the porous material. To be more specific, internal heat is the main source of
energy for celestial bodies caused by nuclear fusion and decaying of radioactive materials,
which keeps the celestial objects warm and active. It is due to the internal heating of the
earth that there exists a thermal gradient between the interior and exterior of the earth’s crust,
saturated by multicomponents fluids, which helps convective flow, thereby transferring the
thermal energy towards the surface of the earth. Therefore, the role of internal heat generation
becomes very important in several applications that include geophysics, reactor safety anal-
yses, metal waste form development for spent nuclear fuel, fire and combustion studies, and
storage of radioactive materials. However, there are relatively very few studies available in
which the effect of internal heating on convective flow has been investigated. Some of these
studies are; Bhattacharya and Jena (1984), Haajizadeh et al. (1984), Rionero and Straughan
(1990), Rao and Wang (1991), Parthiban and Patil (1997), Herron Isom (2001), Khalili and
Huettel (2002), Joshi et al. (2006), Bhadauria et al. (2011), and Bhadauria (2012).

The gravity modulation of the system leads to the variable coefficients in the governing
equations of thermal instability in porous media and involves the vertical time-periodic vibra-
tions of the system. Further, this leads to the appearance of a modified gravity, collinear with
actual gravity, in the form of a time-periodic gravity field perturbation and is known as gravity
modulation or G-jitter in literature. Some of the documented works on gravity modulation in
recent times include Yang (1997), Malashetty and Padmavathi (1997), Rees and Pop (2000,
2001, 2003), Malashetty and Basavaraj (2002), Govender (2004, 2005a,b), Kuznetsov (2005,
2006a,b), Siddhavaram and Homsy (2006), Strong (2008a,b), Razi et al. (2009), Saravanan
and Purusothaman (2009), Vanishree (2010), Saravanan and Arunkumar (2010), Malashetty
and Swamy (2011), and Saravanan and Sivakumar (2010, 2011), Siddheshwar et al. (2012).
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However, most of the studies on thermal instability in a porous medium with gravity modu-
lation concern only linear stability and hence address only questions on onset of convection.
The linear stability analysis is inadequate and the nonlinear stability analysis becomes inev-
itable if one wants to consider the heat transport in the system. Recently Siddheshwar et al.
(2012) have studied the heat transport in Bénard–Darcy convection with G-jitter and thermo-
mechanical anisotropy in variable viscosity liquids.

Anisotropy in porous media, which is due to the preferential orientation or asymmetric
geometry of porous matrix or fibres, is encountered in many systems in industry and nature,
and in the present context, is of particular interest in the study of extraction of metals from
ores where a mushy layer is formed during solidification of a metallic alloy. Further, the qual-
ity and structure of the resulting solid can be controlled by influencing the transport process.
Since, internal heating in porous media or gravity modulation of the system or a combination
of both is an effective mechanism to control the convective flow by suppressing or advancing
it, therefore they can be used as external means to influence the quality and structure of
the resulting solid. With this motive we have made a weak non-linear analysis of thermal
instability in a anisotropic porous medium under gravity modulation, and studied the effect
of internal heating on heat transport, using the Ginzburg–Landau equation and in the pro-
cess quantify the heat transport in terms of the amplitude governed by the Ginzburg–Landau
equation.

2 Mathematical Formulation of the Problem

We consider an infinitely extended horizontal porous layer saturated with an incompressible
viscous Boussinesq fluid confined between two parallel planes, lower plane at z = 0 and
upper one at z = d . A Cartesian frame of reference is chosen in such a way that the origin
lies on the lower plane and the z axis as vertically upward. The porous layer is heated from
below and cooled from above. A schematic diagram of the problem is shown in the Fig. 1.
The porous medium is considered to be anisotropic and follow local thermal equilibrium
assumption. The Darcy law and the Oberbeck–Boussinesq approximation (Rajagopal et al.
2010) are taken to be applicable. Under these assumption, the equations (Nield and Bejan
2006) which describe the system are given by:

Fig. 1 Physical configuration of the gravity modulation problem
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∇ · q = 0 (2.1)
ρ0

φ

∂q
∂t

= −∇ p + ρg (t)− μ(K · q) (2.2)

γ
∂T

∂t
+ (q · ∇)T = ∇ · (κT · ∇T )+ Q(T − T0) (2.3)

ρ = ρ0[1 − αT (T − T0)] (2.4)

g (t) = g0
[
1 + ε2δ1 cos (�t)

]
k̂, (2.5)

where q is velocity (u, v, w), μ is the dynamic viscosity, Q is internal heat source, K is the
permeability tensor, 1

Kx
(î î + ĵ ĵ) + 1

Kz
(k̂k̂), κT is the thermal diffusivity tensor, κTx (î î +

ĵ ĵ) + κTz (k̂k̂), T is temperature, αT is thermal expansion coefficient, γ is the ratio of heat
capacities, ρ is the density, while ρ0 is the reference density. g0 is the mean gravity, δ1 is
the small amplitude of gravity modulation, � is the frequency of gravity modulation, ε is a
quantity that indicates smallness in order of magnitude of modulation and t is the time.

The considered thermal boundary conditions are:

T = T0 +�T at z = 0 and T = T0 at z = d. (2.6)

Assuming the basic state to be quiescent, the quantities at the basic state are given by,

qb = (0, 0, 0), p = pb(z), T = Tb(z), and ρ = ρb(z). (2.7)

The basic state pressure field is not required here, however, the basic temperature field is
governed by the following ordinary differential equation:

κT
d2(Tb − T0)

dz2 + Q(Tb − T0) = 0, (2.8)

where “b” refers the basic state. The Eq. (2.8) is solved for Tb(z) subject to the boundary
condition (2.6), we get

Tb = T0 +�T
sin

√
(Q/κT )

(
1 − z

d

)

sin
√
(Q/κT )

. (2.9)

We assume finite amplitude perturbations on the basic state in the form:

q = qb + q′, T = Tb + T ′, p = pb + p′, ρ = ρb + ρ′ (2.10)

where primes denotes the quantities at the perturbations. Substituting Eq. (2.10) in Eqs. (2.1–
2.3), and using Eq. (2.4), the perturbed equations are obtained as

∇ · q′ = 0 (2.11)
ρ0

φ

∂q′

∂t
= −∇ p′ − μ

K
q′ + ρ0g (t) αT T ′ (2.12)

γ
∂T ′

∂t
+ (q′ · ∇)T ′ + w′ dTb

dz
= κTx ∇1

2T ′ + κTz

∂2T ′

∂z2 + QT ′ (2.13)

Equations (2.11–2.13) are non-dimensionalized by using the following scales:

(x ′, y′, z′) = (x∗, y∗, z∗)d, t = d2

κT z
t∗, q′ = κTz

d
q∗,

T ′ = (�T )T ∗, p′ = μκT z

Kz
p∗, � = κT z

d2 �
∗. (2.14)
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The non-dimensional equations (dropping the asterisks for simplicity) are obtain as

1

V a

∂q

∂t
+ qa = −∇ p + RaT [1 + ε2δ1 cos(�t)]T (2.15)

γ
∂T

∂t
+ (q.∇)T + w

dTb

dz
=

(
η∇2

1 + ∂2

∂z2

)
T + Ri T (2.16)

where RaT = αT g0 Kz(�T )d/νκT z is thermal Rayleigh number, Ri = Qd2/κT z is inter-
nal Rayleigh number. V a = φPr/Da is Vadász number, Pr = ν/κTz is Prandtl number,
Da = Kz/d2 is Darcy number, qa = ( 1

ξ
u, 1

ξ
v, w) is the anisotropic modified velocity vector,

ξ = Kx/Kz is the mechanical anisotropy parameter, η = κT x/κT z is the thermal anisotropy
parameter and ν = μ/ρ0 is kinematic viscosity.

The non-dimensional basic temperature Tb(z) which appears in the Eq. (2.16) can be
obtained from the expression (2.9) as

dTb

dz
= −

√
Ri cos

√
Ri (1 − z)

sin
√

Ri
(2.17)

We consider only 2D disturbances in our study, and hence the stream function ψ may be
introduced in the form:

u = ∂ψ

∂z
, w = −∂ψ

∂x
. (2.18)

Then eliminating the pressure term p from Eq. (2.15), the non-dimensional governing equa-
tions now have the form:

[
1

V a

∂

∂t

(
∂2

∂x2 + ∂2

∂z2

)
+

(
∂2

∂x2 + 1

ξ

∂2

∂z2

)]
ψ=−Ra[1 + ε2δ1 cos(�t)]∂T

∂x
(2.19)

(
γ
∂

∂t
− η

∂2

∂x2 − ∂2

∂z2 − Ri

)
T = ∂ψ

∂x

dTb

dz
+ ∂(ψ, T )

∂(x, z)
(2.20)

To keep the time variation slow, we have rescaled the time t by using the time scale τ = ε2t .
Also to keep the parameters at minimal, the value of γ is taken equal to 1.

Now, to study the stationary convection of the system, we write the non-linear Eqs. (2.19–
2.20) in the matrix form as given below:

[
∇2
ξ Ra ∂

∂x

− dTb
dz

∂
∂x −(∇2

η + Ri )

][
ψ

T

]
=

⎡
⎣− ε2

V a
∂
∂τ

∇2
1ψ − ε2δ1 cos(ωτ)Ra ∂T

∂x

∂(ψ,T )
∂(x,z) − ε2 ∂T

∂τ

⎤
⎦ , (2.21)

where ω = �
ε2 . Since the boundaries are considered to be impermeable and isothermal,

therefore we write the boundary condition to solve Eqs. (2.21) as:

ψ = 0, T = 0 on z = 0, (2.22a)

ψ = 0, T = 0 on z = 1. (2.22b)

3 Finite Amplitude Equation and Heat Transport for Stationary Instability

We now introduce the following asymptotic expansion in Eqs. (2.21):

Ra = R0c + ε2 R2 + ε4 R4 + ..., (3.1a)
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ψ = εψ1 + ε2ψ2 + ε3ψ3 + ..., (3.1b)

T = εT1 + ε2T2 + ε3T3 + ..., (3.1c)

where R0c is the critical value of the Rayleigh number at which the onset of convection takes
place in the absence of gravity modulation. After arranging the systems at different orders
of ε, we get the following system at the lowest order

[
∇2
ξ R0c

∂
∂x

− dTb
dz

∂
∂x −(∇2

η + Ri )

][
ψ1

T1

]
=

[
0
0

]
. (3.2)

The solution of the lowest order system subject to the boundary conditions (2.22) is

ψ1 = A(τ ) sin (kcx) sin (π z) , (3.3)

T1 = 4π2kc

δ2
R(Ri − 4π2)

A(τ ) cos (kcx) sin (π z) (3.4)

where δ2
R = ηk2

c +π2 − Ri . The critical value of the Rayleigh number and the corresponding
wave number for the onset of stationary convection are as given below:

R0c = δ2
ξ δ

2
R(4π

2 − Ri)

4π2k2
c

, (3.5)

kc =
[
π2(π2 − Ri)

ξη

]1/4

, (3.6)

where δ2
ξ = π2

ξ
+ k2

c . For the system without internal-heating, we get

R0c = δ2
ξ δ

2
R

k2
c
, (3.7)

kc = π

(ξη)1/4
, (3.8)

which is the classical results of Epherre (1975). If we take ξ = 1, η = 1, then we get the
classical results of Lapwood (1948) for isotropic porous media.

At the second order, we have
[

∇2
ξ R0c

∂
∂x

− dTb
dz

∂
∂x −(∇2

η + Ri )

] [
ψ1

T1

]
=

[
R21

R22

]
, (3.9)

where

R21 = 0, (3.10a)

R22 = ∂ψ1

∂x

∂T1

∂z
− ∂ψ1

∂z

∂T1

∂x
. (3.10b)

The second-order solution, subject to the boundary condition (2.22), can be obtained as
follows:

ψ2 = 0, (3.11)

T2 = − 2π3k2
c A2(τ )

δ2
R(4π

2 − Ri )
2 sin (2π z) . (3.12)
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The horizontally averaged Nusselt number, Nu, for the stationary convection(the mode
considered in this problem) is given by:

Nu (τ ) = 1 +

[
kc
2π

∫ 2π
kc

0

(
∂T2
∂z

)
dx

]

z=0[
kc
2π

∫ 2π
kc

0

(
dTb
dz

)
dx

]

z=0

. (3.13)

One can notice here that the gravity modulation is effective at O(ε2) and affects Nu(τ )
through A(τ ) as shown next. Substituting expressions (2.17) and (3.12) in the above expres-
sion (3.13) and simplifying, we get

Nu (τ ) = 1 + 4π4k2
c sin

√
Ri

δ2
R(4π

2 − Ri)2
√

Ri cos
√

Ri

[A (τ )]2 . (3.14)

At the third order, we have
[

∇2
ξ R0c

∂
∂x

− dTb
dz

∂
∂x −(∇2

η + Ri )

] [
ψ1

T1

]
=

[
R31

R32

]
, (3.15)

R31 = − 1

V a

∂

∂τ
(∇2

1ψ1)− δ1 cos(ωτ)R0c
∂T1

∂x
− R2

∂T1

∂x
, (3.16a)

R32 = ∂ψ1

∂x

∂T2

∂z
− ∂T1

∂τ
. (3.16b)

Substituting ψ1, T1 and T2 from Eqs. (3.3), (3.4), and (3.12) into Eqs. (3.16a) and (3.16b),
the expressions for R31 and R32 can be obtained easily.

Now applying the solvability condition for the existence of third order solution, we get
the Ginzburg–Landau equation for stationary convection with time-periodic coefficients in
the form:

[
δ2

V aδ2
ξ

+ 1

δ2
R

]
dA (τ )

dτ
=

[
R2

R0c
+δ1 cos(ωτ)

]
A (τ )− π2k2

c

2δ2
R(4π

2 − Ri )
A3 (τ ) . (3.17)

The Ginzburg–Landau equation given by (3.17) is the Bernoulli equation and obtaining
its analytic solution is difficult due to its non-autonomous nature. Therefore it has been
solved numerically using the in-built function NDSolve of Mathmatica 8.0, subject to the
suitable initial condition A(0) = a0, where a0 is the chosen initial amplitude of convec-
tion. In our calculations we may assume R2 = R0, to keep the parameters to the mini-
mum.

4 Results and Discussion

In this paper, we study the combined effect of internal heating and gravity modulation on
thermal instability in a fluid saturated closely packed anisotropic porous medium. A weakly
nonlinear stability analysis has been performed to investigate the effect of gravity modulation
on heat transport. The effect of gravity modulation on the Bénard–Darcy system has been
assumed to be of order O(ε2). This means, we consider only small amplitude gravity mod-
ulation. Such assumption will help us in obtaining the amplitude equation of convection in
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Study of Heat Transport in a Porous Medium 29

rather simple and elegant manner and is much easier to obtain than in the case of the Lorenz
model.

Before discussing the results obtained in the analysis, we would like to make some com-
ments on the various aspects of the problem, such as:

1. The need for nonlinear stability analysis.
2. The relation of the problem to a real application.
3. The selection of all dimensionless parameters utilized in computations.
4. Retaining the local acceleration term 1

V a
∂q
∂t in the momentum equation.

5. Consideration of numerical values for different parameters.

It is imperative to make a nonlinear study of the problem if one wants to obtain heat transport,
which can not be obtained using the linear stability theory, as mentioned in the second last
paragraph of the introduction.

External regulation of convection is important in the study of thermal instability in porous
media. In this paper, we have considered gravity modulation and internal-heating for either
enhancing or inhibiting convective heat transport as is required by a real application.

The parameters that arise here in the study of thermal instability, and influence the heat
transport are V a, Ri , ξ, η, δ1, ω. The first four are related to the properties of fluid and porous
media, and last two concerns the external mechanism that is gravity modulation for control-
ling the convection.

As pointed out by Vadász (1998) in unmodulated case that there are many real situations
in which the value of V a is very large, therefore one can neglect the time-derivative term in
Darcy equation (2.15). Further he points out that there are, however, some modern porous
medium applications, such as mushy layer in solidification of binary alloys and fractured
porous medium, where the value of V a may be considered of the order unity, therefore the
time-derivative term in this study has been retained. This is the reason that we have kept the
values of V a around one in our calculations, and retained the local acceleration term 1

V a
∂q
∂t .

The values of Ri are considered to be moderate so that it will not affect the effect of gravity
modulation of the system by dominating it otherwise. The values of δ1 is considered to be
between 0 and 0.5, since we are studying the effect of small amplitude modulation on the
heat transport. Further, as the effect of low frequencies on the onset of convection as well as
on the heat transport is maximum, therefore the modulation of gravity is assumed to be of
low frequency.

The numerical results for Nu obtained from the expression (3.14) by solving the ampli-
tude equation (3.17) have been presented in the Figs. 2, 3, 4, 5, 6, 7, 8. It can be seen clearly
from Eq. (3.14) in conjunction with (3.17) that Nu(τ ) is a function of Vadász number V a,
thermo-mechanical anisotropy parameters ξ and η, internal heating parameter Ri, frequency
of modulation ω and amplitude of modulation δ1.

The effect of gravity modulation on heat transport is shown in Figs.2, 3, 4, 5, 6, 7, 8, where
the graphs for the Nusselt number Nu are drawn with respect to time τ . From the figures,
it is found that the effect of gravity modulation on the onset of convection is destabilizing,
i.e., heat transport and so the Nusselt number is more in this case than in the absence of
gravity modulation, which is also clear from the studies of Yang (1997), Malashetty and
Padmavathi (1997), and Malashetty and Basavaraj (2002). It is observed that initially, the
value of Nu starts with 1, remains constant for some time, thus showing the conduction
state, increases with time τ for intermediate values of τ , thus showing the convection state,
and finally becomes constant on further increasing τ , thus achieving the steady state. The
behaviour of Nu becomes oscillatory for intermediate values of time τ .
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2

4

6

8

10

12

N
u

5 10 15 20

Fig. 2 Nu vs. time τ , for different values of Ri

Fig. 3 Nu vs. time τ , for different values of V a

Fig. 4 Nu vs. time τ for different values of ξ
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Fig. 5 Nu vs. time τ for different values of η

Fig. 6 Nu vs. time τ for different values of δ1

Fig. 7 Nu vs. time τ for different values of ω
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Fig. 8 Nu vs. time τ . Comparison between internal- and non-internal-heating cases

From Fig. 2, we observe that the effect of internal heating on thermal instability is destabi-
lizing, as heat transport increases on increasing Ri. The heat transport is more at higher values
of Ri. This confirms the results obtained most recently by Bhadauria (2012) and Bhadauria
et al. (2011). Effect of Vadász number V a on the system is also destabilizing (Fig. 3) as
heat transport increases on increasing its value. This result is compatible with the result of
Vadász (1998) obtained for rotating porous medium. From Fig. 4, we find that an incre-
ment in ξ decreases heat transport, thus suppresses the convection. When ξ increases, then
either Kx increases or Kz decreases, and so in both these cases fluid flow through porous
medium decreases in vertical direction in comparison to the flow in horizontal direction.
This delays the convection, and thus decreases the heat transport in the system. However,
the effects of V a and ξ on heat transport diminish at higher values of time τ . Further, it
is found from Fig. 5 that on increasing the value of thermal anisotropy η, heat transport
decreases initially, and then increases as time passes. Thus the effect of mechanical and
thermal anisotropies is found to be opposite at large time, compatible with the results of
Epherre (1975), Kuznetsov and Nield (2008), and Bhadauria (2012), obtained for unmod-
ulated case. However at small time τ , the effect of thermal anisotropy η is similar to ξ
which is just opposite to the unmodulated case. This may be due to the gravity modulation
effect.

From the results of Nield and Kuznetsov (2007), it was found that Rayleigh number
increases on increasing the value of η, that is the onset of convection takes place at later
point, thus an increment in η stabilizes the system so the heat transport is less. This result
is qualitatively similar to the present result given in Fig. 5, where the value of Nu decreases
initially on increasing the value of η thus stabilizing the system. Further in Figs. 4 and 5,
we find certain values of time τ , where the value of Nu is found to decrease on increas-
ing η and decreasing ξ , which is same as stabilizing effects given in Nield and Kuznetsov
(2007).

The effect of δ1 on Nu is depicted in the Fig. 6. From the figure we observe that effect
of increasing the amplitude of gravity modulation is to increase the heat transport, thus
advancing the convection. Further, from Fig. 7, we find that an increment in the frequency
of modulation decreases the magnitude of Nu, and shortens the wavelength of oscillations.
As the frequency increases from 1 to 20, the magnitude of Nu decreases, and the effect of

123



Study of Heat Transport in a Porous Medium 33

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Streamlines at (a) τ = 0.1, (b) τ = 1.0, (c) τ = 2.0, (d) τ = 3.0, (e) τ = 4.0, (f) τ = 5.0

modulation on heat transport diminishes. On further increasing the value of ω that is at
ω = 50, the effect of gravity modulation on thermal instability disappears altogether. This
result is very much in agreement with the linear studies of Yang (1997), Malashetty and
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(a)

(b)

(c)

(c)

(d)

(e)

Fig. 10 Isotherms at (a) τ = 0.1, (b) τ = 1.0, (c) τ = 2.0, (d) τ = 3.0, (e) τ = 4.0, (f) τ = 5.0

Padmavathi (1997), and Malashetty and Basavaraj (2002), where the correction in the crit-
ical value of Rayleigh number due to gravity modulation becomes almost zero at higher
frequencies, and thus no effect of gravity modulation.
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The present result of internal heating has been compared with the results of non-internal
heating in Fig. 8. We observe that in case of internal heating of the system, the heat trans-
port in the system is more than that in the absence of internal heating, thus internal heating
advances the onset of convection.

In Figs. 9 and 10, the streamlines and the corresponding isotherms are depicted respec-
tively, at τ = 0.1, 1.0, 2.0, 3.0, 4.0, and 5.0 for Ri = 0.1, V a = 1.0, ξ = 0.5,
η = 0.5, δ1 = 0.1, ω = 2 and ε= 0.5. From the figures, we observe that initially when
time τ is small the magnitude of streamlines is also small, and isotherms are straight that is
the system is in conduction state. However, as time increases the magnitude of streamlines
increases and the isotherms loses their evenness. This shows that now convection is taking
place in the system. Convection becomes faster on further increasing the value of time τ .
Further from Figs.9d, e and 10d, e, it is found that the system achieves its steady state at
about τ = 5.0 as their is no change in the streamlines and isotherms on further increasing τ
beyond 5.0.

5 Conclusions

In the present paper, we consider the combined effect of internal heating and gravity mod-
ulation on Bénard–Darcy convection in a closely packed porous medium, and perform a
weak non-linear stability analysis by using the Gingburg–Landau equation. The following
conclusions are drawn:

1. Effect of gravity modulation is oscillatory on heat transport in the system.
2. The effects of internal heating and V a are to increase the heat transport in the system.
3. The effect of an increment in the frequency of modulation is to decrease the heat trans-

port, while amplitude of modulation increases the heat transport.
4. Heat transport decreases on increasing the mechanical anisotropy parameter ξ .
5. Effect of increasing the value of thermal anisotropy parameter η is negligible on heat

transport.
6. Heat transport is more in this case than in the absence of internal heating.
7. As time τ increases, the magnitude of streamlines increases and the isotherms loses their

evenness.
8. Steady state is attained by the system at τ = 5.0.

Further, we have

1. Nu/Ri = 1.0 < Nu/Ri = 1.5 < Nu/Ri = 2.0,
2. Nu/V a = 0.5 < Nu/V a = 1.0 < Nu/V a = 1.5,
3. Nu/ξ = 1.5 < Nu/ξ = 1.0 < Nu/ξ = 0.5,
4. Nu/δ1 = 0.1 < Nu/δ1 = 0.2 < Nu/δ1 = 0.5,
5. Nu/ω= 20.0 < Nu/ω= 5 < Nu/ω= 1.0,
6. Nu/Ri = 0.0 < Nu/Ri>0.
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