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This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical
investigation is carried out using the control volume-based-finite element method (CVFEM). The numerical investigations are
performed for various values of Hartmann number and Rayleigh number.The obtained results are depicted in terms of streamlines
and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the
enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.

1. Introduction

The study of natural convection in horizontal annuli is of
importance in many industrial and geophysical problems.
This topic is of practical interest in several applications such
as solar collector-receiver, underground electric transmission
cables, vapor condenser for water distillation, and food
processing. Mohammed et al. [1] experimentally investigated
the forced and free convection for thermally developing
and fully developed laminar airflow inside a horizontal
concentric annulus. They showed that the Nusselt number
is considerably greater for developing flow than the corre-
sponding values for fully developed flow over a significant
portion of the annulus. Kuehn and Goldstein [2] presented
experimental and numerical studies of steady-state natural
convection heat transfer in a horizontal concentric annulus.
They studied parametrically the effects of the Rayleigh and
Prandtl numbers and aspect ratio and proposed correlat-
ing equations. Natural convection between a square outer
cylinder and a heated elliptic inner cylinder was studied
numerically by Bararnia et al. [3].They found that streamlines
and isotherms strongly depend on the Rayleigh number and
the position of the inner cylinder. Recently, several papers
were published about natural convection [4–13].

Natural convection under the influence of a magnetic
field is of great importance in many industrial applications
such as crystal growth in liquid, cooling of nuclear reactor,
electronic package, microelectronic devices, and solar tech-
nology. In the case of free convection of an electrically con-
ducting fluid in the presence of amagnetic field, there are two
body forces: buoyancy force and Lorentz force. They interact
with each other and can influence heat and mass transfer.
Thus, it is important to study the detailed characteristics of
transport phenomena in such a process to have a better prod-
uct with improved design. Magnetohydrodynamic natural
convection in a vertical cylindrical cavity with a sinusoidal
upper wall temperature was investigated by Kakarantzas et al.
[14]. They concluded that the increase of Hartmann number
results in a damping of the fluid motion, and thus heat
conduction progressively dominates over convection heat
transfer. Rudraiah et al. [15] investigated numerically the
effect of a magnetic field on natural convection in a rectan-
gular enclosure.They found that the magnetic field decreases
the rate of heat transfer. Sheikholeslami et al. [16] studied
the natural convection in a concentric annulus between a
cold outer square and heated inner circular cylinders in
the presence of a static radial magnetic field. They reported
that the average Nusselt number is an increasing function
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Figure 1: (a) Geometry and the boundary conditions with (b) the mesh of enclosure considered in this work.

of the nanoparticle volume fraction parameter and Rayleigh
number, while it is a decreasing function of Hartmann
number. Effect of magnetic field on natural convection was
considered by several authors [17–29].

Control volume-based-finite-element method (CVFEM)
is a scheme that uses the advantages of both finite-volume
and finite-element methods for simulation of multiphysics
problems in complex geometries [30, 31]. Soleimani et al. [32]
studied natural convection heat transfer in a semiannulus
enclosure filled with nanofluid using CVFEM. They found
that the angle of turn has an important effect on the stream-
lines, isotherms, and maximum or minimum values of the
local Nusselt number. Sheikholeslami et al. [33] performed a
numerical analysis for natural convection heat transfer of Cu-
water nanofluid in a cold outer circular enclosure containing
a hot inner sinusoidal circular cylinder in the presence of
a horizontal magnetic field using CVFEM. They concluded
that in the absence of a magnetic field, the enhancement
ratio decreases as the Rayleigh number increases, while an
opposite trend is observed in the presence of a magnetic
field. Also, they found that the average Nusselt number is
an increasing function of the nanoparticle volume fraction
parameter, the number of undulations, and Rayleigh number,
while it is a decreasing function of the Hartmann number.
The applications of this method were introduced by different
authors [34, 35].

The main goal of the present work is to conduct a nu-
merical investigation of natural convection heat transfer in
a curved-shape enclosure in the presence of a magnetic field
using CVFEM.The numerical investigation is carried out for
different values of the governing parameters.

2. Problem Formulation

The physical model along with the important geometrical
parameters is shown in Figure 1(a). The width and height of
the enclosure is 𝐻. The right and top walls of the enclosure
are maintained at constant cold temperature 𝑇

𝑐
, whereas

the inner circular hot wall is maintained at constant hot
temperature 𝑇

ℎ
and the bottom and left walls with the length

of 𝐻/2 are thermally insulated. Under all cases, 𝑇
ℎ
> 𝑇
𝑐

condition is maintained.
To assess the shape of inner circular and outer rectangular

boundaries which consist of the right and topwalls, an elliptic
function can be used as follows:

(
𝑋

𝑎
)

2𝑛

+ (
𝑌

𝑏
)

2𝑛

= 1. (1)

When 𝑎 = 𝑏 and 𝑛 = 1, the geometry becomes a circle. As 𝑛
increases from 1, the geometrywould approach a rectangle for
𝑎 ̸= 𝑏 and square for 𝑎 = 𝑏. It is also assumed that the uniform
magnetic field (�⃗� = 𝐵

𝑥
⃗𝑒
𝑥
+ 𝐵
𝑦

⃗𝑒
𝑦
) of constant magnitude

𝐵 = √𝐵
2

𝑥
+ 𝐵2
𝑦
is applied, where ⃗𝑒

𝑥
and ⃗𝑒
𝑦
are unit vectors

in the Cartesian coordinate system. The orientation of the
magnetic field forms an angle 𝛾with horizontal axis such that
𝛾 = 𝐵

𝑥
/𝐵
𝑦
. The electric current 𝐽 and the electromagnetic

force 𝐹 are defined by 𝐽 = 𝜎(�⃗� × �⃗�) and 𝐹 = 𝜎(�⃗� × �⃗�) × �⃗�,
respectively.

The flow is two-dimensional, laminar, and incompress-
ible. The radiation, viscous dissipation, induced electric cur-
rent, and Joule heating are neglected.Themagnetic Reynolds
number is assumed to be small so that the induced magnetic
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field can be neglected compared to the appliedmagnetic field.
Now using the Boussinesq approximation, the governing
equations can be obtained in dimensional form as follows
[15]:

𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
= 0, (2)

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜐(

𝜕
2

𝑢

𝜕𝑥2
+
𝜕
2

𝑢

𝜕𝑦2
)

+
𝜎𝐵
2

𝜌
(V sin 𝜆 cos 𝜆 − 𝑢 sin2𝜆) ,

(3)

𝑢
𝜕V

𝜕𝑥
+ V

𝜕V

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜐(

𝜕
2V

𝜕𝑥2
+
𝜕
2V

𝜕𝑦2
) + 𝛽𝑔 (𝑇 − 𝑇

𝑐
)

+
𝜎𝐵
2

𝜌
(𝑢 sin 𝜆 cos 𝜆 − V cos2𝜆) ,

(4)

𝑢
𝜕𝑇

𝜕𝑥
+ V

𝜕𝑇

𝜕𝑦
= 𝛼(

𝜕
2

𝑇

𝜕𝑥2
+
𝜕
2

𝑇

𝜕𝑦2
) . (5)

The stream function and vorticity are defined as follows:

𝑢 =
𝜕𝜓

𝜕𝑦
, V = −

𝜕𝜓

𝜕𝑥
, 𝜔 =

𝜕V

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
. (6)

The stream function satisfies the continuity equation (2).The
vorticity equation is obtained by eliminating the pressure
between the two momentum equations, that is, by taking the
y-derivative of (3) and subtracting from it the x-derivative of
(4). This gives

𝜕𝜓

𝜕𝑦

𝜕𝜔

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝜔

𝜕𝑦

= 𝜐(
𝜕
2

𝜔

𝜕𝑥2
+
𝜕
2

𝜔

𝜕𝑦2
) + 𝛽𝑔(

𝜕𝑇

𝜕𝑥
)

+
𝜎𝐵
2

𝜌
(−

𝜕V

𝜕𝑦
sin 𝜆 cos 𝜆 + 𝜕𝑢

𝜕𝑦
sin2𝜆

+
𝜕𝑢

𝜕𝑥
sin 𝜆 cos 𝜆 − 𝜕V

𝜕𝑥
cos2𝜆) ,

𝜕𝜓

𝜕𝑦

𝜕𝑇

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦
= 𝛼(

𝜕
2

𝑇

𝜕𝑥2
+
𝜕
2

𝑇

𝜕𝑦2
) ,

𝜕
2

𝜓

𝜕𝑥2
+
𝜕
2

𝜓

𝜕𝑦2
= −𝜔.

(7)

Nondimensional variables are defined as follows:

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
, Ω =

𝜔𝐿
2

𝛼
, Ψ =

𝜓

𝛼
,

Θ =
𝑇 − 𝑇
𝑐

𝑇
ℎ
− 𝑇
𝑐

, 𝑈 =
V𝐿

𝛼
, 𝑉 =

V𝐿

𝛼
,

(8)

where 𝐿 = 𝑟out − 𝑟in = 𝑟in. Using the dimensionless pa-
rameters, the equations now become as follows:

𝜕Ψ

𝜕𝑌

𝜕Ω

𝜕𝑋
−
𝜕Ψ

𝜕𝑋

𝜕Ω

𝜕𝑌

= Pr(𝜕
2

Ω

𝜕𝑋2
+
𝜕
2

Ω

𝜕𝑌2
) + Ra Pr(𝜕Θ

𝜕𝑋
) +Ha2Pr

× (−
𝜕𝑉

𝜕𝑌
tan 𝜆 + 𝜕𝑈

𝜕𝑌
tan2𝜆 + 𝜕𝑈

𝜕𝑋
tan 𝜆 − 𝜕𝑉

𝜕𝑋
) ,

𝜕Ψ

𝜕𝑌

𝜕Θ

𝜕𝑋
−
𝜕Ψ

𝜕𝑋

𝜕Θ

𝜕𝑌
= (

𝜕
2

Θ

𝜕𝑋2
+
𝜕
2

Θ

𝜕𝑌2
) ,

𝜕
2

Ψ

𝜕𝑋2
+
𝜕
2

Ψ

𝜕𝑌2
= −Ω,

(9)

where Ra = 𝑔𝛽𝐿
3

(𝑇
ℎ
− 𝑇
𝑐
)/(𝛼𝜐) is the Rayleigh number,

Ha = 𝐿𝐵
𝑥
√𝜎/𝜇 is the Hartmann number, and Pr = 𝜐/𝛼 is

the Prandtl number. The boundary conditions as shown in
Figure 1 are

Θ = 1.0 on the inner circular boundary,

Θ = 0.0 on the outer circular boundary,

𝜕Θ

𝜕𝑛
= 0.0 on the two other insulation boundaries,

Ψ = 0.0 on all solid boundaries.

(10)

The values of vorticity on the boundary of the enclosure
can be obtained using the stream function formulation and
the known velocity conditions during the iterative solution
procedure. The local Nusselt number along the hot wall can
be expressed as

Nuloc =
𝜕Θ

𝜕𝑛

hot wall
, (11)

where 𝑛 is the direction normal to the inner circular wall.The
average Nusselt number on hot wall is evaluated as

Nuave =
1

𝜋/2
∫

𝜋/2

0

Nulocal (𝜃) 𝑑𝜃. (12)

3. Numerical Procedure

The mesh of the enclosure used in the present CVFEM
program is shown in Figure 1(b). Triangular elements are
considered as the building block of the discretization using
CVFEM. The values of variables are approximated with
linear interpolation within each element. A control volume is
created by joining the center of each element in the support
to the midpoints of the element sides that pass through the
central node 𝑖, which creates a close polygonal control volume
(see Figure 1(b)). To illustrate the solution procedure using
the CVFEM, one can consider the general form of advection-
diffusion equation for node 𝑖 in integral form

−∫
𝑉

𝑄𝑑𝑉 − ∫
𝐴

𝑘∇𝜙 ⋅ 𝑛 𝑑𝐴 + ∫
𝐴

(V ⋅ 𝑛) 𝜙 𝑑𝐴 = 0 (13)
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or point form

−∇ ⋅ (𝑘∇𝜙) + ∇ ⋅ (V𝜙) − 𝑄 = 0, (14)

which can be represented by the system of CVFEM discrete
equations as

[𝑎
𝑖
+ 𝑄𝑐
𝑖
+ 𝐵𝑐
𝑖
] 𝜙
𝑖
=

𝑛𝑖

∑

𝑗=1

𝑎
𝑖,𝑗
𝜙
𝑆𝑖,𝑗

+ 𝑄
𝐵𝑖
+ 𝐵
𝐵𝑖
. (15)

In the aforementioned, the a’s are the coefficients, the index
(𝑖, 𝑗) indicates the 𝑗th node in the support of node 𝑖, the index
𝑆
𝑖,𝑗
provides the node number of the 𝑗th node in the support,

the B’s account for boundary conditions, and theQ’s account
for source terms. For the selected triangular element which
is shown in Figure 2, the approximation without considering
the source terms leads to

− (𝑎
𝑘

1
+ 𝑎
𝑢

1
) 𝜙
𝑖
+ (𝑎
𝑘

2
+ 𝑎
𝑢

2
) 𝜙
𝑆𝑖,3

+ (𝑎
𝑘

2
+ 𝑎
𝑢

2
) 𝜙
𝑆𝑖,4

= 0. (16)

Using upwinding, the advective coefficients identified
with the superscripts ()𝑢 are given by

𝑎
𝑢

1
= max [𝑞

𝑓1
, 0] +max [𝑞

𝑓2
, 0] ,

𝑎
𝑢

2
= max [−𝑞

𝑓1
, 0] ,

𝑎
𝑢

3
= max [−𝑞

𝑓2
, 0] ,

(17)

and the diffusion coefficients, identified with the superscripts
()
𝑘, are given by

𝑎
𝑘

1
=− 𝑘
𝑓1
𝑁
1𝑥
Δ ⃗𝑦
𝑓1
+ 𝑘
𝑓1
𝑁
1𝑦
Δ�⃗�
𝑓1
− 𝑘
𝑓2
𝑁
1𝑥
Δ ⃗𝑦
𝑓2

+ 𝑘
𝑓2
𝑁
1𝑦
Δ�⃗�
𝑓2
,

𝑎
𝑘

2
=− 𝑘
𝑓1
𝑁
2𝑥
Δ ⃗𝑦
𝑓1
+ 𝑘
𝑓1
𝑁
2𝑦
Δ�⃗�
𝑓1
− 𝑘
𝑓2
𝑁
2𝑥
Δ ⃗𝑦
𝑓2

+ 𝑘
𝑓2
𝑁
2𝑦
Δ�⃗�
𝑓2
,

𝑎
𝑘

2
= − 𝑘

𝑓1
𝑁
3𝑥
Δ ⃗𝑦
𝑓1
+ 𝑘
𝑓1
𝑁
3𝑦
Δ�⃗�
𝑓1
− 𝑘
𝑓2
𝑁
3𝑥
Δ ⃗𝑦
𝑓2

+ 𝑘
𝑓2
𝑁
3𝑦
Δ�⃗�
𝑓2
.

(18)

In (17), the volume flow across faces 1 and 2 in the direction
of the outward normal is

𝑞
𝑓1

= V ⋅ 𝑛 𝐴|
𝑓1

= V
𝑓1

𝑥
Δ ⃗𝑦
𝑓1
− V
𝑓1

𝑦
Δ ⃗𝑦
𝑓1
,

𝑞
𝑓2

= V ⋅ 𝑛 𝐴|
𝑓2

= V
𝑓2

𝑥
Δ ⃗𝑦
𝑓2
− V
𝑓2

𝑦
Δ ⃗𝑦
𝑓2
.

(19)

The value of the diffusivity at the midpoint of face 1 is

𝑘
𝑓1

= [𝑁
1
𝑘
1
+ 𝑁
2
𝑘
2
+ 𝑁
3
𝑘
3
]
𝑓1

=
5

12
𝑘
1
+

5

12
𝑘
2
+

2

12
𝑘
3

(20)

and at the midpoint of face 2 is

𝑘
𝑓2

= [𝑁
1
𝑘
1
+ 𝑁
2
𝑘
2
+ 𝑁
3
𝑘
3
]
𝑓2

=
5

12
𝑘
1
+

2

12
𝑘
2
+

5

12
𝑘
3
.

(21)

The velocity components at the midpoint of face 1 are

V
𝑓1

𝑥
=

5

12
V
𝑥1
+

5

12
V
𝑥2
+

2

12
V
𝑥3

V
𝑓1

𝑦
=

5

12
V
𝑦1
+

5

12
V
𝑦2
+

2

12
V
𝑦3

(22)

and on face 2 are

V
𝑓2

𝑥
=

5

12
V
𝑥1
+

2

12
V
𝑥2
+

5

12
V
𝑥3
,

V
𝑓2

𝑦
=

5

12
V
𝑦1
+

2

12
V
𝑦2
+

5

12
V
𝑦3
.

(23)

These values can be used to update the 𝑖th support coef-
ficients through the following equations:

𝑎
𝑖
= 𝑎
𝑖
+ 𝑎
𝑘

1
,

𝑎
𝑖,3
= 𝑎
𝑖,3
+ 𝑎
𝑘

2
,

𝑎
𝑖,4
= 𝑎
𝑖,4
+ 𝑎
𝑘

3
.

(24)

In (18), moving counterclockwise around node i, the signed
distances are

Δ�⃗�
𝑓1

=
𝑥
3

3
−
𝑥
2

6
−
𝑥
1

6
, Δ�⃗�

𝑓2
= −

𝑥
2

3
+
𝑥
3

6
+
𝑥
1

6
,

Δ ⃗𝑦
𝑓1

=
𝑦
3

3
−
𝑦
2

6
−
𝑦
1

6
, Δ ⃗𝑦

𝑓2
= −

𝑦
2

3
+
𝑦
3

6
+
𝑦
1

6
,

(25)
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Table 1: Comparison of the average Nusselt number Nuave for different grid resolutions at Ra = 10
5, Ha = 100, 𝑟/𝐿 = 0.75, and Pr = 0.025.

Mesh size
31 × 91 41 × 121 51 × 151 61 × 181 71 × 211 81 × 241 91 × 271

2.1191 2.1485 2.1660 2.1781 2.1869 2.1937 2.1990

the derivatives of the shape functions are

𝑁
1𝑥
=
𝜕𝑁
1

𝜕𝑥
=
(𝑦
2
− 𝑦
3
)

2𝑉ele , 𝑁
1𝑦
=
𝜕𝑁
1

𝜕𝑦
=
(𝑥
3
− 𝑥
2
)

2𝑉ele ,

𝑁
2𝑥
=
𝜕𝑁
2

𝜕𝑥
=
(𝑦
3
− 𝑦
1
)

2𝑉ele , 𝑁
2𝑦
=
𝜕𝑁
1

𝜕𝑦
=
(𝑥
1
− 𝑥
3
)

2𝑉ele ,

𝑁
3𝑥
=
𝜕𝑁
2

𝜕𝑥
=
(𝑦
1
− 𝑦
2
)

2𝑉ele , 𝑁
3𝑦
=
𝜕𝑁
3

𝜕𝑦
=
(𝑥
2
− 𝑥
1
)

2𝑉ele ,

(26)

and the volume of the element is

𝑉
ele

=
(𝑥
2
𝑦
3
− 𝑥
3
𝑦
2
) + 𝑥
1
(𝑦
2
− 𝑦
3
) + 𝑦
1
(𝑥
3
− 𝑥
2
)

2
. (27)

The obtained algebraic equations from the discretization
procedure using CVFEM are solved by the Gauss-Seidel
method.

Boundary conditions for the present problem can be
applied using 𝐵

𝐵𝑖
and 𝐵

𝐶𝑖
as follows.

Insulated boundary:

𝐵
𝐵𝑖
= 0, 𝐵

𝐶𝑖
= 0. (28)

Insulated boundary:

𝐵
𝐵𝑖
= 0, 𝐵

𝐶𝑖
= 0. (29)

Fixed value boundary:

𝐵
𝐵𝑖
= 𝜙value × 10

16

, 𝐵
𝐶𝑖
= 10
16

, (30)

where 𝜙value is the prescribed value on the boundary. The
volume source terms can be applied to (15) as

elements
∑

𝑗=1

∫
𝑉𝑗

𝑄𝑑𝑉 ≈ 𝑄
𝑖
𝑉
𝑖

(31)

or after linearizing the source term

𝑄
𝑖
𝑉
𝑖
= −𝑄
𝐶𝑖
𝜙
𝑖
+ 𝑄
𝐵𝑖
. (32)

4. Grid Testing and Code Validation

A mesh testing procedure was conducted to guarantee the
grid independency of the present solution. Various mesh
combinations were explored for the case Ra = 10

5

, Ha =

100, 𝑟/𝐿 = 0.75, and Pr = 0.025 as shown in Table 1. The
present code was tested for grid independence by calculating
the average Nusselt number on the inner circular wall. In
harmony with this, it was found that a grid size of 81 ×

Table 2: Comparison of the present results with previous works for
different Rayleigh numbers when Pr = 0.7.

Ra Present [36] [37]
10
3 1.1432 1.118 1.118

10
4 2.2749 2.245 2.243

10
5 4.5199 4.522 4.519

241 ensures a grid-independent solution. The convergence
criterion for the termination of all computations is

ma
grid

x

Γ
̂
𝑘+1

− Γ
̂
𝑘

≤ 10
−7

, (33)

where �̂� is the iteration number and Γ stands for the inde-
pendent variables (Ω,Ψ,Θ). The present FORTRAN code is
validated by comparing the obtained results for Pr = 0.7with
those reported in [36, 37] (see Table 2). Moreover, Table 3
shows the effects of a transverse magnetic field on natural-
convection flow inside a rectangular enclosure which are
compared with the results of Rudraiah et al. [15]. All of the
previous comparisons indicate the accuracy of the present
code.

5. Results and Discussion

In this study, natural convection heat transfer in an curved-
shape enclosure in the presence of a magnetic field is investi-
gated numerically using CVFEM. Calculations are made for
various values of the Hartmann number, Ha = 0, 10, 100, and
Rayleigh number, Ra = 10

3

, 10
4

, 10
5.

Figures 3 and 4 show the isotherms and streamlines con-
tours for different values of Rayleigh number and Hartmann
number. At Ra = 10

3, the isotherms are parallel to each
other and take the shape of the enclosure which are the
main characteristics of conduction heat transfer mechanism.
At Ra = 10

4, the circulation of the flow shows that the
main eddy is divided into two eddies. Also, as Rayleigh
number increases, the isotherms become more distorted and
the stream function values are enhanced which is due to the
domination of convective heat transfer mechanism at higher
Rayleigh numbers. At this Rayleigh number, a thermal plume
appears over the hot surface at 𝛾 = 50

∘. At Ra = 10
5, one

small counterclockwise eddy appears between two clockwise
eddies. It is worthwhilementioning that the effect ofmagnetic
field is to decrease the value of the velocity magnitude
throughout the enclosure because the presence of magnetic
field introduces a force called the Lorentz force, which acts
against the flow if the magnetic field is applied in the normal
direction. This type of resisting force slows down the fluid
velocity. Increasing Hartmann number has no significant
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Figure 3: Isotherms contours for different values of Rayleigh number and Hartmann number at 𝑟/𝐿 = 0.75 and Pr = 0.025.

effect on isotherms and streamlines at low Rayleigh number.
At Ra = 10

4, as Hartmann number increases, secondary
eddies disappear and the core of voracity moves upward. At
Ra = 10

5, increasing Hartmann number up to Ha = 10, two
othercounter clockwise eddies appear. But in higher values of
Hartmann number, it can be seen that all secondary eddies
vanish. Also, it can be seen that in the presence of magnetic
field, thermal plumes disappear.

Effects of the Rayleigh number and Hartmann number
on local Nusselt number are shown in Figure 5. At Ra =

10
3, the local Nusselt number profiles are symmetric with

respect to 𝛾 = 45
∘, which indicates the domination of

conduction heat transfer mechanism. For higher Rayleigh
number, local Nusselt number profiles are not symmetric
and have extremums because of presence of thermal plumes.
At Ra = 10

4, in absence of magnetic field, the local
Nusselt number profile has one local minimum at 𝛾 = 50

∘.
Increasing Hartmann number shifts this minimum point to
𝛾 = 45

∘. At Ra = 10
5, in the absence of magnetic field,

the local Nusselt number profile has three local minima
but as Hartmann number increases, these extrema disappear
because of domination of conduction mechanism.

Figure 6 shows the effects of the Rayleigh number
and Hartmann number on average Nusselt number and
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Figure 4: Streamlines contours for different values of Rayleigh number and Hartmann number at 𝑟/𝐿 = 0.75 and Pr = 0.025.

maximum value of stream function. As Rayleigh number
increases, buoyancy force increases so that both thermal
and velocity boundary layer thicknesses decrease. Increasing
Rayleigh number leads to increase in average Nusselt number
and |Ψmax|. When the magnetic field is imposed on the
enclosure, the velocity field is suppressed owing to the
retarding effect of the Lorentz force. As Hartmann number
increases boundary layer thicknesses increase, and in turn the
average Nusselt number and |Ψmax| decrease.

Table 3: Average Nusselt number versus different Grashof numbers
under various strengths of the magnetic field at Pr = 0.733.

Ha Gr = 2 × 10
4 Gr = 2 × 10

5

Present Rudraiah et al. [15] Present Rudraiah et al. [15]
0 2.5665 2.5188 5.093205 4.9198
10 2.26626 2.2234 4.9047 4.8053
50 1.09954 1.0856 2.67911 2.8442
100 1.02218 1.011 1.46048 1.4317
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Figure 5: Effects of the Rayleigh number and Hartmann number on local Nusselt number.

6. Conclusion

In this study, natural convection heat transfer in a curved-
shape inclined enclosure in the presence of magnetic field
is investigated numerically using the control volume-based
finite element method (CVFEM). From the numerical inves-
tigation, it can be concluded that the Hartmann number can
be a control parameter for heat and fluid flow. In addition, it
can be found that the Nusselt number andmaximum value of
stream function are increasing functions of Rayleigh number
and decreasing functions of Hartmann number.

Nomenclature

𝐶
𝑝
: Specific heat at constant pressure

Gr: Grashof number (= 𝑔𝛽Δ𝑇𝐿
3

/𝜐
2

)

Ha: Hartmann number
Nu: Nusselt number
Pr: Prandtl number (= 𝜐/𝛼)

𝑇: Fluid temperature
𝑢, V: Velocity components in the 𝑥-direction and

𝑦-direction
𝑈,𝑉: Dimensionless velocity components in the

𝑋-direction and 𝑌-direction
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Figure 6: Effects of the Rayleigh number and Hartmann number
on (a) average Nusselt number and (b) maximum value of stream
function at 𝑟/𝐿 = 0.75 and Pr = 0.025.

𝑋,𝑌: Dimensionless space coordinates
𝑟: Nondimensional radial distance
𝑘: Thermal conductivity
𝐿: Gap between inner and outer boundaries of

the enclosure 𝐿 = 𝑟out − 𝑟in
⃗𝑔: Gravitational acceleration vector

Ra: Rayleigh number (= 𝑔𝛽Δ𝑇𝐿
3

/𝛼]).

Greek Symbols

𝜁: Angle measured from the insulated right plane
𝛼: Thermal diffusivity
𝜎: Electrical conductivity
𝜇: Dynamic viscosity
𝜐: Kinematic viscosity
𝜓 & Ψ: Stream function and dimensionless stream

function
Θ: Dimensionless temperature
𝜌: Fluid density
𝛽: Thermal expansion coefficient.

Subscripts

𝑐: Cold
ℎ: Hot
loc: Local
ave: Average
in: Inner
out: Outer.
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